
Born Broken: Fonts and Information Loss 5

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Born Broken: Fonts and Information Loss in Legacy Digital
Documents

Geoffrey Brown & Kam Woods

School of Informatics and Computing
Indiana University Bloomington

Abstract
For millions of legacy documents, correct rendering depends upon resources such as fonts that are
not generally embedded within the document structure. Yet there is a significant risk of information
loss due to missing or incorrectly substituted fonts. Large document collections depend on
thousands of unique fonts not available on a common desktop workstation, which typically has
between 100 and 200 fonts. Silent substitution of fonts, performed by applications such as Microsoft
Office, can yield poorly rendered documents. In this paper we use a collection of 230,000 Word
documents to assess the difficulty of matching font requirements with a database of fonts. We
describe the identifying information contained in common font formats, font requirements stored in
Word documents, the API provided by Windows to support font requests by applications, the
documented substitution algorithms used by Windows when requested fonts are not available, and
the ways in which support software might be used to control font substitution in a preservation
environment.1

1 This paper is based on the paper given by the authors at the 6th International Conference on Preserva
tion of Digital Objects (iPres 2009), October 2009; received January 2010, published March 2011.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.

6 Born Broken: Fonts and Information Loss

Overview
Q: I need “font x”. ... Can you tell me where I can get it?

A: This is very unlikely, as there are over 100,000 digital fonts in
existence.2

Doubtless, many readers have witnessed PowerPoint presentations where the
slides were clearly missing glyphs (visible characters) or were otherwise poorly
rendered. In most cases, this unhappy event is the direct result of copying the
presentation from the machine upon which it was created to a machine provided for the
presentation without ensuring that the target machine has the required fonts. This
reason is not always clear to the presenter because Microsoft Office performs font
substitution without warning.

Annoying font substitutions occur frequently. For example, symbols such as
apostrophes and quotations are rendered with the “WP TypographicSymbol” font in
WordPerfect Office 11. When these documents are migrated to Microsoft Word, this
font dependence is preserved, and when the documents are rendered on machines
without this font, these symbols become “A” and “@” as in: “in the AStrategies and
Assessment@Column”.3

The degree of information loss due to substitution depends both upon the
importance of the glyphs substituted and their frequency. For example, corporate logos
are often implemented with dedicated fonts containing a single glyph. There may be no
substantive information loss from a missing logo for most purposes. In contrast,
substitution for mathematical symbols may result in total information loss. For
example, our experimental data include nine documents with program listings for the
Texas Instruments TI-83 series calculators rendered with the Ti83Pluspc font,
which provides various mathematical symbols; these program listings are
incomprehensible when rendered without this obscure font. This is illustrated in Figure
1. Compounding the problem, Texas Instruments has published a variety of calculator
fonts with different internal names and possibly incompatible glyphs.

Correctly Rendered

Default Substitution
Figure 1. TI83plus Font Samples.

In the process of preparing this paper we found several documents with
2 Microsoft Typography: http://www.microsoft.com/typography/FontSearchFAQ.mspx.
3 WordPerfect Universe: http://www.wpuniverse.com/vb/showthread.php?threadid=16756.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.wpuniverse.com/vb/showthread.php?threadid=16756
http://www.microsoft.com/typography/FontSearchFAQ.mspx

Geoffrey Brown and Kam Woods 7

barcodes rendered using the font “Barcode 3 of 9 by request”. When rendered with
font substitutions, the bar codes of the numbers are replaced by Arabic numerals. Thus,
the substitution preserved the numeric meaning, but not the functional ability to be
scanned! Unfortunately, there are many barcode fonts and we were unable to find the
required font; however, we were able to find a suitable substitute and to configure
Office to accept our substitute as illustrated in Figure 2.

0260931
Default Substitution

Forced Substitution of “Code39Azalea”

Figure 2. Barcode Rendering.

It is difficult to create portable documents that will not suffer from font
substitution when moved to another machine. Fonts are installed on a platform by the
operating system, by applications, and by individuals. A user has no way to distinguish
between standard fonts offered in an Office menu and those that have been installed by
other applications. For example, ESRI provides fonts with its various GIS applications.
While these are relatively specialized applications that are unlikely to be present on
most platforms, there is nothing preventing an Office user from utilizing the associated
fonts. Furthermore, even the set of standard fonts changes over time – the fonts
installed by Windows XP are not identical to those installed by Vista. Because of
significant differences in the machine environments, there is a high probability that
transferring a document between machines will result in missing fonts.

A solution to the problem of missing fonts for document preservation requires
three components: identification of missing fonts, acquisition of the fonts or suitable
substitutes, and configuring a suitable rendering environment including all fonts or
their substitutes. In this paper we focus on the problem of font identification. The
issues we discuss include extraction of font identification data from digital documents,
the use of that information to match against a database of known font identifiers, and
techniques for controlling font substitution.

The central analysis in this paper is based upon two large collections of Word
documents – one described by Reichherzer and Brown (2006) and gathered using
glossary queries to Google; the second exclusively gathered from “.gov” sites. The
second collection was created to test an hypothesis that government documents might
use more restricted font sets; however, that did not prove to be the case.

To test our ability to match font requirements with font names we gathered font
name information from several major vendors and application software. Names were
extracted from fonts, from published lists of fonts and from tables of names provided
by vendors.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

8 Born Broken: Fonts and Information Loss

While the results initially appear depressing – a common desktop environment can
correctly render around 75% of a document collection – there are indications that with
modest work the fonts required to faithfully render 92% of a collection can be readily
identified. The problem of identification is unsolvable in an absolute sense, as in any
collection of documents there are likely to be required fonts that cannot be reasonably
identified. There are simply too many fonts which have been in use and the data on
font names available from font foundries or the fonts themselves too sparse to
guarantee identification. Furthermore, some documents may include fonts with corrupt
name information – we have seen examples of documents with indecipherable font
names.

The remainder of this paper is organized as follows. We begin with a discussion
of font formats (e.g., TrueType) and the available font identification information. By
gathering information from fonts and font vendors, we have created a database
containing several thousand popular fonts. We then describe the information available
in Office documents and our use of open source libraries to extract the names of fonts
referenced by these documents. Finally, we describe experiments to match font names
extracted from Microsoft Office documents with names in our database.

Background

Fonts
A font consists of a set of glyphs indexed by codepoints (integers) within one or

more codepages (a defined codepoint to a character mapping, such as the Latin
alphabet) along with various geometric rendering information. Two fonts may be
suitable substitutes if they contain similar glyphs for all codepoints. While this is
frequently the case where the glyphs represent characters from common alphabets,
there are many special case of symbolic characters (e.g., mathematical, scientific, or
icons) where substitution of glyphs from another font destroys the underlying meaning
of the document.

While there have been many font formats in use, the two most common formats
for Windows platforms are PostScript and TrueType. There are still bitmapped fonts
distributed with Windows for MS-DOS compatibility (FON files) which do appear to
be used in some Office files. However, other than noting that they contain name strings
that can be extracted, we do not discuss them further.

Although PostScript fonts appear to be in the decline, they were the dominant font
format for at least a decade. There are several PostScript font formats (e.g., types 0, 1,
and 2) but many of the differences relate to how glyphs are defined. For font
identification, the key information provided in every PostScript font includes ASCII
strings identifying the font version, family name, font name, and full name (Adobe
Developer Connection, 2009). The full name shows the complete name of a typeface
including style and character set information, and is typically used in font menus. The
font name generally contains much of the same information as the full name, but in a
compressed form limited to 29 characters. There are conventions for this compression
(for example, a rule that reduces the “words” to a string with 5, 3 and 3 characters);
however, it can be challenging to relate the font name strings with published lists of
fonts (Microsoft, 2009a).

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Geoffrey Brown and Kam Woods 9

TrueType was developed by Apple as a competitor to PostScript fonts and was
subsequently adopted by Windows. Today, TrueType is the most common font format
for Mac OS, the X Windows platform and Microsoft Windows. The file format for
TrueType is now covered by the OpenType specification (which can serve as a
container for PostScript fonts). OpenType files are organized as a set of tables. The
most important tables for our work are the naming tables (name) and the table (OS/2)
containing Windows metrics, including the Unicode and Windows code page ranges.
The name table includes various strings keyed by platform, encoding, language and
name. Platforms include Windows and Macintosh. Encodings are platform-specific –
on the Macintosh these correspond to script manager codes (e.g., Roman, Japanese,
etc.), whilst on Windows, common encodings include Unicode UCS-2 and UCS-4.

OpenType language IDs are platform-specific and are used to indicate various
language-specific translations of the name strings. The types of names include
copyright, font family, font subfamily, full font name and PostScript names. The
language used in font name strings within Office documents corresponds (where
available) to the language for the Windows platform upon which the document was
created; for example, “Arial Bold”, “Arial Negrita”, “Arial Vet”, and “Arial Gras” are
the English, Spanish, Dutch, and French names for the same font. In gathering font
data for this paper we found that only the most widely used fonts tend to have name
strings in multiple languages and several large foundries provided only English names
strings with the majority of their fonts.

Fonts in Windows and Word
In this paper we concentrate on the legacy Microsoft Word binary format.

While we have performed no specific work with other formats (e.g., WordPerfect)
there is good reason to believe that the conclusions will be similar because application
programs, such as Word and WordPerfect, depend upon the underlying operating
system API for access to and rendering of installed fonts. The font information
embedded in a document is ultimately based upon the information available from the
system API. Thus, we begin with a brief examination of the Win32 font functionality
as described in the MSDN documentation (Microsoft Developer Network, 2009). A
complete analysis examining the APIs of other operating systems (e.g., for the
Macintosh) is beyond the scope of this paper.

The central data structure used by an application to exchange font information
with the Windows operating system is the “logical font” or LOGFONT structure that is
used to describe the most significant features of a font. Applications create LOGFONT
structures to request that Windows find a matching font and Windows enumerates
available fonts for applications by generating LOGFONT structures. The
structure provides information such as weight, orientation and style (e.g., script,
decorative, Roman), as well as a (maximum) 32-character (Unicode or ASCII) name
for the font. The metrics provide geometric information such as pitch and width, style
information such as italic or underlined, and information about the range and type of
the character set supported (e.g., ANSI, Symbol, Turkish). The type information can be
used to distinguish “Raster fonts”, “Vector fonts”, “TrueType fonts”, and
“Downloadable fonts”.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

10 Born Broken: Fonts and Information Loss

Word documents store their knowledge about fonts in a similar structure table of
“font family names” (FFN), which include the name string (from the LOGFONT
structure), a flag indicating whether the font is TrueType, the character set, the font
weight and style, PANOSE number, and a 20-byte “font signature” (Microsoft, 2009c).
The name string is either in UTF-16 or ASCII depending upon the version of Word
creating a document. The font signature indicates the Unicode (16 bytes) and Windows
code pages (8 bytes) for which the font contains glyphs. Similar data exist in the OS/2
metrics table for OpenType fonts and might be useful for verifying that a font file
matches the font referenced by a Word document.

PANOSE numbers were developed in the 1980’s (Bauermeister, 1987) as a
mechanism for classifying fonts with the explicit goal of identifying good substitutes.
While TrueType fonts include PANOSE numbers, and Word retains those numbers in
its font tables, published research suggests that PANOSE has not been widely
implemented correctly, with many fonts having “default” values (Impson, 2005).4

Furthermore, where PANOSE is used correctly the information is likely to be of little
added value for font identification because these fonts tend to be those distributed by
major vendors such as Microsoft, for which accurate font name data has been recorded.

In our work, we rely upon the font name strings extracted from Office documents.
While every Word document contains a single font name table, not all fonts listed in
this table are used by the document. Furthermore, our experience suggests that as a
document evolves, Word fails to properly delete unused entries and empty or “garbage
collect” name strings. Thus, extracting the set of valid name strings requires walking
the document character by character.

Font Matching Experiments
In this section we use two data sets totaling approximately 230,000 Word

documents to evaluate the difficulty of identifying referenced fonts, given a database
of font information. The primary identification technique we utilize is based upon
name matching; however, we also evaluate the utility of the other font metrics
recorded in Word documents.

We had hoped to build a database of font information extracted from the fonts
published by the major foundries; however, we found most foundries reluctant to
provide the requested information and the cost of purchasing fonts was not justified by
this exploratory research.5 We resorted to combining information from a variety of
sources, including font files and font name information provided by several major
foundries, extracted from published lists, and retrieved from foundry web pages. The
font collections include fonts provided with various Mac OS X and MS Windows
distributions, fonts distributed with applications such as Microsoft Office and
WordPerfect, and fonts donated by Bitstream. The font data we collected are
summarized in Table 1.

4 High-Logic Font Forum: http://forum.high-logic.com/viewtopic.php?f=13\&t=2600.
5 We are grateful to Bitstream for providing a large collection of fonts, and to FontFont and URW for
providing tables of font name information.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://forum.high-logic.com/viewtopic.php?f=13%5C&t=2600

Geoffrey Brown and Kam Woods 11

To determine the fonts used in Word documents we wrote a custom application
based upon the open source library libwv, which is the basis for file import in
Abiword and other applications (Lachowicz, 2009). Through comparing key aspects of
libwv with the published specification, we believe that it is relatively correct. There
are aspects of the specification that are far from clear, and specific notes point to items
requiring further work. The libwv software provides a basic document processing
function with application-specific callback functions. For our work, it was necessary
only to provide a function to track the fonts specified at the beginning of a text run and
a function to process each character in a text run. For each font in the document name
table, we record both the codepoints used and the number of characters referencing the
font. Selection of the correct font for a given character is actually done incorrectly in
libwv, as the code does not implement the “font calculation” described in Appendix
B of the Word 2007 Binary File Format document (Microsoft, 2009c). We corrected
this error in our work. Our code generates reports including the active font names with
the number of codepoints and characters from each font, as well as the other font
metrics recorded in the Word document.

Foundry
Adobe Published Table 2374
Bitstream TrueType Fonts 1556
FontFont Foundry Supplied Table 11973
URW Foundry Supplied Table 2358

Operating System
Microsoft Windows + Office Font Files 444
Mac OS X + Office Font Files 322

Application
Adobe PostScript Published List 103
Microsoft Applications Published List 537
WordPerfect TrueType Fonts 1080

Source Data Type Number of Fonts

Table 1. Font Data.

Figure 3. Font Usage for Glossary Documents.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

12 Born Broken: Fonts and Information Loss

Given the font information extracted from a collection of Word documents and a
database of font names we can determine which extracted names exactly match names
in the database. While there appear to be opportunities to apply various heuristics for
inexact matching (for example, longest matching prefixes), our examination of the
names suggests there are many special cases, thus we studied exact matching as a
baseline. We matched names against three distinct name sets: our complete collection,
the names extracted from an installation of Windows XP and Office 2007, and the
single name “Times New Roman”, which is the most common font referenced in our
data sets.

Our metric for each font collection is the percentage of documents whose font
requirements can be completely met (satisfied) by that collection. We compare these
results with the percentage of “satisfied documents” given font collections of the N
most referenced fonts for all values of N. The results for our glossary based collection
(3910 fonts) are illustrated in Figure 3 and those for the “.gov” documents (1920 fonts)
are illustrated in Figure 4. Although the total number of referenced fonts differs, the
overall results are quite similar: roughly 31-39% satisfied by Times New Roman, 72-
79% satisfied by XP and Office, and 90-94% satisfied by our more comprehensive
collection. Notice that in both cases the top 100 fonts satisfy approximately 92% of the
documents.

Figure 4. Font Usage for Government Documents.

As mentioned above, exact name matching is probably too pessimistic. For
example, we noticed many variations on fonts including the word “Times”. Some of
this variation is due to similar fonts published by different vendors, some is due to
changes in name conventions from the early bitmapped fonts to PostScript fonts to
Truetype, and some is due to significant differences. The top 10 “Times” fonts and
their fraction of reference from the two document collections is illustrated in Table 2.
The complete list comprises 375 fonts and 49% of all font references. Note that the
values in Table 2 are calculated from the total number of references rather than the
percentage of documents satisfied.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Geoffrey Brown and Kam Woods 13

Even if all variations on “Times”, after suitable analysis, proved to be equivalent,
the overall problem isn’t significantly simplified. The extremely long tail on font usage
means achieving a 95% satisfaction level for a document collection is tractable,
achieving 99% may not be feasible. Furthermore, our experience suggests that finding
many of the identified fonts will be quite challenging.

Times New Roman 42.00%
Times 3%
CG Times 1%
TimesNewRoman 0.5%
Times New Roman Bold <0.5%
TimesNewRoman,Bold <0.5%
Times New (W1) <0.5%
CG Times (W1) <0.5%
TimesNewRomanPSMT <0.5%
Times-Roman <0.5%
… ...
Total (375) 49.00%

Table 2. Times Variations. Percentages calculated from number of times each font
variation is encountered.

Ultimately, preservation of documents will require selection of suitable font
substitutes either because a particular font cannot be obtained or cannot be identified.
Thus, we examined other data that might aid in characterizing suitable substitutes or in
determining whether a required font is critical to preserving the information content of
a document.

The primary additional font metrics available from Word documents include the
font family (Roman, Swiss, etc.) and pitch, the font weight, PANOSE number, and
Code sets (Unicode and Windows). The two font families that are likely to be safely
substituted are Roman and Swiss (serif and san serif fonts respectively). It is less clear
whether Modern or Script can be substituted, and Decorative generally cannot be
substituted. As illustrated in Table 3 and Table 4, either the font family or pitch
information has a “default” value for nearly 40% of all referenced fonts. The font
family categories are described by Microsoft (2009b).

Default 40%
Fixed Pitch 3%
Variable Pitch 57%

Table 3. Font Pitch.

Default Do not care or don’t know 42%
Roman Serif fonts with variable stroke width 28%
Swiss San serif fonts with variable stroke width 21.5%
Modern Constant stroke width 4.5%
Script Handwriting 2%
Decorative Novelty and other 2%

Table 4. Font Family.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

14 Born Broken: Fonts and Information Loss

Unicode range and Codepage information can be used to analyze font data at a
finer granularity, providing a clearer picture of why a particular font may be used in a
given document (e.g., in order to satisfy the need for particular glyphs) and potential
guidance on the selection of a suitable substitute. We intend to explore the use of such
information in future research.

As mentioned, many fonts are used for a single or few glyphs. In the case of the
document collections studied, nearly 10% of all referenced fonts were used for only a
single glyph. Unfortunately, even assuming all these fonts are known (by adding the
names to our database) doesn’t appreciably alter our “satisfaction” rate.

Font Substitution
Locating missing fonts using name strings as a primary identifier is challenging.

While a number of websites provide a font search (one-at-a-time) based upon large
databases, they are often incomplete, inaccurate, and cannot be automatically queried.
We encountered a variety of problems with names containing non-ASCII characters,
compressed names, variations of known names, and rare or specialized fonts.
Processing compressed names in particular may be platform specific. For example, the
Windows fonts named “Helv” and “Tms Rmn” in Windows 3.0 were renamed to “MS
Sans Serif” and “MS Serif” respectively in Windows 3.1. Modern iterations of the
Microsoft operating system maintain a system-accessible map in the font substitution
registry subkey to correctly map these names. However, on Macintosh platforms the
proper substitutions remain unavailable.

Font substitution in Microsoft Windows is performed according to a “closest
match” criteria calculated as a weighted sum from a vector of information
corresponding to the LOGFONT structure. As the name suggests, this information
does not correspond to a “physical” font (e.g., the data that define a font installed or
loaded into the task environment) but rather a “logical” font composed of a sequence
of properties, requested as a result of a user action or application request during the
loading of a document.

When an application is tasked with displaying text in a given font, it performs an
API function call populated with values from the LOGFONT corresponding to the
desired (logical) attributes. Windows realizes a best match to the desired font by
searching the installed fonts to find one with values closest to this attribute set. As
previously noted, these attributes include font family names, font weight, font width,
and font slope. An obvious consequence of this is that the (absolute) best match may
correspond to a font not installed on the system.

Font matching information is pre-calculated and cached from existing font
collections according to a detailed algorithm designed to support efficient font
matching on request. In addition to the attributes noted above, this process includes the
generation of combined Family and Face names, extraction and resolution of various
terms for style and weight (for example, “Bold Face” to be treated the same as
“Bold”), and the extraction of canonical numerical representations.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Geoffrey Brown and Kam Woods 15

Fonts are subsequently matched by location of an exact (or longest-substring
match) FontFamily name, a matching face from the candidate face list (computed as a
weighted attribute vector based on FontStretch, FontStyle, and FontWeight –
prioritized in that order), and localization settings.

Microsoft provides detailed information on font matching in Windows under the
Windows Presentation Foundation (Microsoft, 2006). In some cases, a matched font
may not contain the required glyphs (for example, a font with a Latin-only glyph-set
requested to render glyphs in an unsupported codepoint range). The Microsoft
Unicode-rendering service, Uniscribe, will automatically render the unsupported script
in the appropriate fallback font (Kaplan, 2009). In addition to this “transparent” glyph
substitution, fonts (in Windows 2000 and later) may also be linked, providing the
ability to explicitly select add codepoints to a “base font” for which additional glyphs
are desired.

In order to provide more accurate mapping from logical to physical fonts and to
account for improved rendering technologies, Microsoft introduced improved APIs in
Windows XP (moving from GDI to GDI+) and Windows 7 (with the development of
DirectWrite). As a result, the font substitution actions performed by different versions
of Microsoft Office may be inconsistent. Additionally, the default font substitution
algorithm implemented in GDI+ may be overridden within an application.

Because of this, it can be difficult to accurately replicate substitution actions
performed by a proprietary application such as Microsoft Word. This can be
demonstrated via a simple experiment using fonts provided with the operating system.
If a LOGFONT structure is populated completely with information from a font loaded
into the system font table using an API call such as AddFontResourceEx(), and
that font is then unloaded, a subsequent call to the function CreateFont() under
Windows XP (GDI+) will frequently result in mapping that differs from the
substitution performed by Microsoft Office.

Exacerbating the problem, there is not enough information included in a legacy
Word (.doc) file for any font used to completely fill the LOGFONT structure. Font
information that is available, such as the PANOSE number or a substitution “hint”,
cannot be passed directly to font mapping functions within GDI+. This is important
because it exposes a significant preservation issue; even when document specifications
are well documented (or fully open), the behavior of the application most commonly
used to render those documents becomes the de facto standard for all rendering
services. If the behavior of such an application depends on code or API functions that
are not generally exposed, the “openness” of the format is not necessarily a guarantee
of preservation-friendliness.

David Levy notes that the severity of the risk posed by font substitution depends
on a variety of factors, that “even in these simplest of cases, sensitivity to the
circumstances of use is crucial to determining what is to be preserved – what counts as
successful preservation” (Levy, 1998). Font selection algorithms are complex, and the
substitution actions performed may be opaque to anyone who is not a typographer or
software developer. However, simple tools can assist the user in determining the
degree to which a rendered document is well-formed (or exhibits information loss).

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

16 Born Broken: Fonts and Information Loss

Given that font substitution risk is inevitable, we developed a prototype tool to
enable users of Word to easily locate the specific text where a particular font occurs
and to enumerate the number of glyphs used. We extended the functionality of our
libwv-based tool with a small custom plug-in written in C# for Microsoft Word. This
tool preprocesses the document as described in the Font Matching Experiments
section, and presents the user with a dialog identifying the total number of document
characters, a dump of the font name table along with the total number of glyphs in the
font actually used in the document, and buttons to mark up (highlight) or search the
document for specific font occurrences irrespective of whether they have been
correctly rendered or subject to substitution.

In the example illustrated in Figure 5, the unavailable Cyrillic font “Glasnost
Light” has been substituted by a font which does not contain glyphs in the appropriate
character range. This particular example uncovers another subtle problem with font
identification. The publisher of the version of the Glasnost Light font used in this
document had remapped an existing character range – in this case, standard Western
ASCII characters for Cyrillic glyphs. We discovered this only after we had located
what we believed to be the correct version of the font. The rendered document
remained garbled (albeit this time with Cyrillic characters) due to the fact that we had
selected a version of the font with the Cyrillic characters in the proper code page.

Figure 5. Word Plug-in Identifying Substituted “Glasnost Light” Text.

We believe that these tools can be incorporated into risk assessment workflows in
a manner that is both low cost and highly reliable. Batch processing using our
previously described tool can be used to rapidly and automatically flag potential high-
risk documents, which may then be presented to the user via the augmented Microsoft
Word interface in order to determine the actual risk.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Geoffrey Brown and Kam Woods 17

Discussion
We have shown that the majority (up to 79%) of digital documents obtained from

a wide range of sources can be rendered accurately using fonts appearing in modern
desktop environments such as the combination of Microsoft Windows and Microsoft
Office. With a small amount of additional work – using information drawn from font
foundries, or performing family name matches for legacy fonts or commercial fonts for
which distribution has ceased – we can expect to increase this coverage to 92%.

This nevertheless leaves a large number of documents unaccounted for.
Microsoft’s own search engine indexes nearly 60 million documents currently
available on the web. At this level of coverage, 1.8 million documents are guaranteed
to be rendered inconsistently on a typical workstation. For many of these documents,
the loss of information may be negligible. It is impossible, however, to quantify this
without appropriate software tools to analyze the risk to a particular collection.

Even with access to the full documentation for a legacy proprietary format,
replicating the behavior of the original environment used to render that document can
be extremely difficult – or impossible – for tasks as seemingly basic as font selection
and use. Publishers and institutional archives build support around work-flows
optimized for “born archival” documents, the majority of the documents produced in
the world today continue to be created using proprietary office software with font
embedding disabled. While there has been significant uptake in the development and
use of open syntactic specification for documents, the font identification and selection
problem remains.

A significant barrier to improving document creation practices that facilitate
future access is the simple fact that many software products do not embed fonts by
default, but require additional action on the part of the user. Problematically, even
enabling font embedding does not guarantee that the document will fully support all
types of access. For example, at the time of writing, Microsoft Word 2007 and 2010 do
not examine embedded OLE objects created with MS Equation 3.0 or MathType when
directed to embed fonts, an issue compounded by the fact that the MT Extra font
installed on the host system by MathType contains additional glyphs not present in the
version distributed by Microsoft (Microsoft, 2010a). Although a domain expert
viewing incoherently rendered equations in the future may have little trouble
recognizing that there is a problem with the document, recreating the appropriate
rendering environment remains difficult. Furthermore, TrueType fonts may be created
with properties that restrict the degree to which they may be used on systems other
than the originating host; certain fonts may be fully installed from an embedded
context, installed temporarily, embedded read-only, or disallow embedding.

The use of formats such as archival PDF, which has been extensively discussed in
preservation literature (Fanning, 2008), is in some ways orthogonal to the key
problems identified here. Governments and private institutions rely on software such
as Microsoft Word for ease of interchange, edit, and reuse, and will likely continue to
do so for the foreseeable future. Additionally, many millions of legacy documents are
currently available on the web in both legacy and modern office software formats – a
backlog of significant historical data. Practices such as those described in this paper
can help in identifying those documents that are likely to be “high risk” during
otherwise automated ingest procedures.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

18 Born Broken: Fonts and Information Loss

Font handling is heavily contextual, relying on technical information drawn from
the font itself, the document creation software and environment, and finally the
rendering or document migration platform. Collating and analyzing this information to
identify risk factors is difficult and time-consuming, since many features of both fonts
and rendering environments either lack public documentation or are addressed only on
technical forums available via disparate Internet sources. Companies that produce and
license fonts are frequently reticent about releasing further documentation on their
intellectual property, and even when the algorithms used to render documents in
common office software applications are well-documented, analyzing and replicating
their operation is frequently difficult.

Automated tools to simplify the identification and location of missing fonts in
document sets can significantly reduce the risk of information loss in an archive. As
part of our ongoing research, we are developing tools to assist archivists in processing
and analyzing font information from large collections of documents. Our current tool
is capable of automatically preprocessing collections of Microsoft Word documents,
identifying ranges of characters for which fonts are not available, and rendering those
ranges separately from the remainder of the document for examination. In concert with
this tool, we have developed a plug-in for Word which automatically locates and
highlights ranges for which fonts or characters have been substituted. Future iterations
of the tool may be adapted to use unicode ranges for language identification, or
incorporate existing language identification software to assist in separation of human
language and symbolic font uses.

Our research demonstrates the need for simple, effective tools to correctly identify
font information and locate missing font data in order to facilitate lossless rendering.
We show that effective rendering of heterogeneous document collections can only
occur when supported by a database of information drawn from multiple vendors; no
existing identification technology provides universal or even adequate coverage.
Proper archival handling of these digital objects should include tools to rapidly and
selectively present to a human-relevant document segments for quality assurance in
order to mitigate risk during subsequent archival and access events.

References
Adobe Developer Connection. (2009). Font technical notes. Retrieved December 18,

2009, from http://www.adobe.com/devnet/font.

Bauermeister, B. (1987). A Manual of Comparative Typography. New York US: Van
Nostrand Reinhold.

Fanning, B. (2008). Preserving the data explosion: Using PDF. Digital Preservation
Coalition Technology Watch Report 08-02. Silver Spring, MD: Digital
Preservation Coalition and AIIM.

Impson, J. (2005). Evaluating the IBM and HP/PANOSE font classification systems.
Online Information Review 29, (5). Bradford, West Yorkshire: MCB
University Press.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.adobe.com/devnet/font

Geoffrey Brown and Kam Woods 19

Kaplan, M. (2009). Font substitution and linking #1. Retrieved December 18, 2009,
from http://blogs.msdn.com/michkap/archive/2005/03/20/399322.aspx.

Lachowicz, D. (2009). wvWare, library for converting Word documents. Retrieved
December 18, 2009, from http://wvware.sourceforge.net/.

Levy, D.M. (1998). Heroic measures: reflections on the possibility and purpose of
digital preservation. In DL ’98: Proceedings of the third ACM conference on
Digital libraries. New York, NY, USA: ACM.

Microsoft (2006). WPF font selection model. Retrieved February 16, 2011, from
http://blogs.msdn.com/b/text/archive/2007/04/23/wpf-font-selection-
model.aspx.

Microsoft (2009). DirectWrite API Reference. Retrieved December 18, 2009, from
http://msdn.microsoft.com/en-us/library/dd368038(VS.85).aspx.

Microsoft (2009a). List of fonts supplied with Microsoft products. Retrieved December
18, 2009, from http://www.microsoft.com/typography/fonts/product.aspx?
PID=1.

Microsoft (2009b). LOGFONT. Retrieved December 18, 2009, from
http://msdn.microsoft.com/en-us/library/ms901140.aspx.

Microsoft (2009c). Microsoft Word 2007 binary format specification. Retrieved
December 18, 2009, from http://msdn.microsoft.com/en-
us/library/cc313153.aspx.

Microsoft (2010a). Unable to embed TrueType Fonts in OLE equation objects.
Retrieved November 29, 2010, from
http://social.answers.microsoft.com/Forums/en-
US/wordcreate/thread/0f05a908-5449-4dae-b7dc-57c05a9e42a0.

Reichherzer, T., and Brown, G. (2006). Quantifying software requirements for
supporting archived office documents using emulation. In JCDL ’06:
Proceedings of the 6th ACM/IEEE-CS joint conference on digital libraries.
New York, NY, USA: ACM.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://social.answers.microsoft.com/Forums/en-US/wordcreate/thread/0f05a908-5449-4dae-b7dc-57c05a9e42a0
http://social.answers.microsoft.com/Forums/en-US/wordcreate/thread/0f05a908-5449-4dae-b7dc-57c05a9e42a0
http://msdn.microsoft.com/en-us/library/cc313153.aspx
http://msdn.microsoft.com/en-us/library/cc313153.aspx
http://msdn.microsoft.com/en-us/library/ms901140.aspx
http://www.microsoft.com/typography/fonts/product.aspx?PID=1
http://www.microsoft.com/typography/fonts/product.aspx?PID=1
http://msdn.microsoft.com/en-us/library/dd368038(VS.85).aspx
http://blogs.msdn.com/b/text/archive/2007/04/23/wpf-font-selection-model.aspx
http://blogs.msdn.com/b/text/archive/2007/04/23/wpf-font-selection-model.aspx
http://wvware.sourceforge.net/
http://blogs.msdn.com/michkap/archive/2005/03/20/399322.aspx

	Abstract
	Overview
	Background
	Fonts
	Fonts in Windows and Word

	Font Matching Experiments
	Font Substitution
	Discussion
	References

