
Dependency Analysis 99

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Dependency Analysis of Legacy Digital Materials
to Support Emulation Based Preservation

Aaron Hsu and Geoffrey Brown,
Indiana University School of Informatics and Computing

Abstract
Emulation has been widely discussed as a preservation strategy for digital documents that depend
upon proprietary executables, as well as for legacy programs. The fundamental assumption of this
strategy is that an artifact (document or program) will be bundled with any required
contemporaneous software in an archival information package (AIP) which can be loaded and
executed in an emulation environment by patrons wishing to access the preserved artifact, yet little
has been written about how to identify the required components for such an AIP. Even where a
digital document was distributed with a binary viewer, there may be dependencies on other software
libraries. In this paper we discuss a pilot study that performed dependency analysis for digital
materials originally distributed on CD-ROM. In particular, we show how to utilize a small number
of existing off-the-shelf libraries to build a tool that can analyze executables within ISO (CD-ROM)
images, and then examine the results of applying this tool to a body of archived images.1

1 This paper is based on the paper given by the authors at the 6th International Digital Curation
Conference, December 2010; received December 2010, published March 2011.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.

100 Dependency Analysis

Introduction
In spite of the extreme positions taken on the viability of emulation as a

preservation strategy (Rothenberg, 1995; Granger, 2000; Bearman, 1999) there are
digital artifacts that cannot be migrated from their original execution environments.
For example, H. R. Haldeman’s2 diaries were published in abridged form on paper and
unabridged form on a multimedia CD-ROM that depends upon 16-bit versions of
QuickTime (Haldeman & Ambrose, 1994). With the recent revelation of William
Mark Felt Sr. as Deep Throat3, access to this CD-ROM took new importance to
historians as:

H. R. Haldeman ... refers to Felt on April 26 and 27, 1973, in the CD-ROM
version of his diaries. These references do not appear in the print version of
The Haldeman Diaries (Deep Throat Unveiled, 2007).

There are many commercial and open source tools available to execute legacy
operating systems such as Windows and Mac OS, yet developing a practical emulation
environment for the preservation of a large document collection has many challenges.
The major components of such an environment (for a single artifact) were summarized
by Granger (2000):

• Developing generalizable techniques for specifying emulators that will run
on unknown future computers and that capture all of those attributes
required to recreate the behavior of current and future digital documents;

• developing techniques for saving – in human-readable form – the metadata
needed to find, access and recreate digital documents so that emulation
techniques can be used for preservation; and,

• developing techniques for encapsulating documents, their attendant
metadata, software, and emulator specifications in ways that ensure their
cohesion and prevent their corruption.

In this paper we describe preliminary work aimed at addressing this last point. In
particular, we describe a program that is capable of drilling down into CD-ROM
images (ISO9660) and other digital media, finding the executables buried within
installers, executable archives and other distribution formats, and analyzing these
executables to determine their dependence upon foreign libraries (DLLs). This work is
part of a larger project to build a virtual archive of documents encapsulated with their
necessary execution environments (Woods & Brown, 2009a).

This work focuses on the Windows 3.0 and greater class of executable programs.
These programs are interesting because they are some of the earliest Windows
programs that contain dynamically linked dependencies. DOS programs before these
versions did not have dynamically linked libraries that were distributed as a separate
element of the program. These programs affect emulation environments because they
are no longer self-contained executables, but require that the compatible versions of
their dynamic dependencies are installed on the system. Not all dynamic libraries work
well together, and it is the case that some programs will not interact reliably with other
programs when they are both installed on the same system.

2 President Richard Nixon’s chief of staff.
3 Source of the Watergate leaks.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Aaron Hsu and Geoffrey Brown 101

The tool that we developed provides a means of inspecting these dependencies.
This allows one to examine dependencies without having to install the programs.
Moreover, we use the program to develop statistics on the distribution, frequency and
relative popularity of dynamic libraries in a software archive.

Windows GUI Executables constitute a large corpus of software artifacts, but they
are by no means the only dynamically linked programs. Both Macintosh and UNIX or
UNIX-like operating systems have support for dynamically linked executables. We
have not examined or considered this class of software in our study, though these are
important programs to consider.

While our program is built using widely available libraries that enable the analysis
of binary archive formats and executables for DLL references, there were numerous
issues that arose in applying these tools, including the discovery of a wide variety of
legacy distribution formats and significant bugs in the off-the-shelf libraries when
applied to legacy CD-ROMs. We summarize these pitfalls and describe our solutions.

We tested our program on nearly 2700 ISO images of CD-ROMs distributed by
the United States Government Printing Office under the Federal Depository Library
program (FDLP). These images were created as part of our larger research effort.
Recognizing that these images may be a special case, as many of the distributed
binaries were relatively simple data access tools, we have also applied our program to
a smaller number of commercial CD-ROMs. Nevertheless, this legacy collection
reveals a large number of referenced DLLs, including both 16-bit and 32-bit modules.
The most common of these are standard Windows libraries, although some are unique
to the distributed software.

The remainder of this paper is organized as follows. We begin with a discussion
of the technical problem this work addresses and the issues that arose in creating a
program to perform the necessary dependency analysis. We then describe the results of
applying this tool to the GPO and commercial images, along with key observations,
and discuss our implementation. We conclude with a discussion of related work, the
open issues in our work and how it might be extended.

Module Dependencies
Most programs consist of multiple files or components. Usually, an executable

tells the program loader what the components to the program are, and where to start
running the program. An executable will normally contain only a portion of the code
necessary to run the program; additional portions of code are stored in external
modules. Windows calls these modules DLLs. DLLs enable programs to share code
amongst themselves and to divide up the code into multiple, self-contain files that
programs access using a specific, controlled interface, usually called an API. Windows
provides most of its functionality through DLLs, which have grown in number and
evolved in function over the various versions of Windows. Third party software
designed for developers often has DLLs that enable developers to access various
functionality inside of their own programs. For example, the 16-bit version of
QuickTime required by the Haldeman diaries provides DLLs necessary for the diary
viewer.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

102 Dependency Analysis

A program contains module dependencies when the program references or
imports such external modules. In order to emulate such software, the emulation
environment must contain installations of all of the program’s dependencies.
Unfortunately, due to a wide variety of executable formats and a large number of
modules which may conflict, a single emulation environment does not suffice to
satisfy a suitably broad selection of software without careful analysis of the installed
modules. For example, the QuickTime supplied with the Haldeman diaries conflicts
with later versions of QuickTime. In an emulation environment, and especially one
that deploys software packages semi- or fully-automatically, the myriad of potential
conflicts aggravates an already complex problem. Often, while the vendor may ship
the dependencies with the software, installing these modules in a compatible way
proves challenging. The QuickTime libraries shipped with the Haldeman diaries are a
good example. While the dependency was in fact shipped, the information about what
QuickTime version shipped, whether it is compatible with newer versions and where
the real dependencies actually reside in the archive are not easy to answer, and
extracting this information can be a fragile process. Indeed, these QuickTime libraries
are not compatible with later versions of Windows (e.g. XP), yet the viewer can
successfully be run with the final 16-bit version of QuickTime on Windows XP.

In order to build an artifact specific emulation environment we must know the
module dependencies of any required software. Tools exist that present this
information for single executables, but they have limitations and do not always present
the information in a convenient format. Additionally, these tools cannot extract this
information from a large set of files that may contain executables. We have
implemented a tool that can recursively traverse a set of files and extract the module
dependency information. It produces machine-readable output to enable a more
programmatic analysis of dependencies. The general process can be summarized as:

1. Find executables within sets of files and archives;
2. Extract executables;
3. Determine executable dependencies.

The process omits an important step, which is unfortunately outside the scope of this
paper: determining which dependent modules are readily available and which of them
have potential version conflicts. Ideally, our analysis would produce a report, for a
given artifact, of compatible operating system versions and necessary modules to be
loaded from a related database.

While it is often possible to simply install software directly into an instance of a
system, this creates a trial-and-error situation where one must install the set of
programs that are desired and then test them experimentally to determine whether they
are stable when existing together on a single system or not. This is not a reliable
testing methodology, and it has implications for scaling. One of the important benefits
of an external tool for analyzing dependencies is that software dependencies may be
captured en masse before installation, and examined for software conflicts before the
time and energy is wasted on installing a potentially conflicting set of packages.

This study also seeds the discussion and collection of aggregate statistics about
the use and popularity of various dynamic libraries, which can help system maintainers
and deployers to estimate the costs of managing dependency conflicts. So, while it

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Aaron Hsu and Geoffrey Brown 103

may be a simple task (in isolation) to install the requisite dependencies of a software
package, which are often shipped with the software in question, there are non-trivial
considerations that require additional support when this task is scaled to the level of a
software archive.

Even with the tool chain to achieve a reliable and full-scale dependency and
conflict database, there is significant effort required to actually create it. In its own
right, this task would require the accumulation of a very large number of software
artifacts, possibly gathered through the collaborative efforts of many institutions, and
would require difficult-to-automate testing of the various potential software
interactions. While there are anecdotes concerning these problems, and various
knowledge bases have a limited form of documentation of these problems, they are of
limited use when performing automatic processing. We discuss some examples of such
technical issues further on in this paper.

Basic Results
In order to test our tool, we processed a collection of roughly 2700 ISO images

containing a variety of applications and data on them. Our program deeply traversed
the images, found executable files based on extension and extracted the module
dependency information from them. The program traversed the internal contents of a
number of archive formats, the chief being various forms of Zip archives. Other
archives were traversed, but usually led to no additional executables, such as Tar and
Gzip archives. For the moment, our tool ignores Microsoft Cab files but we did not
encounter a significant number of them in our program, since many of the images were
created before Cab files were popular as an executable archive format. We intend to
implement this to support other archives containing such files.

The choice to filter executables by extension was a pragmatic one. Inspecting the
contents of files to determine whether they contain executable content would have
identified mangled or purposefully obscured executables, but the complexity of doing
so was deemed to be impractical for this study. Further studies would benefit from
deeper and more thorough heuristics both in identifying the type of executable as well
as determining the executable status of a file. Tools such as DROID4 and the
libsharedmime5 provide much of the infrastructure necessary for deeper file analysis.

Executables
We encountered a number of different executables, but ignored those that were

not 16 or 32-bit Windows executables since most do not contain dependencies (DOS
executables, for example, do not contain dependencies). 32-bit Windows executables
store the most DLL information. Each 32-bit executable contains zero or more import
entries in the header. Each entry specifies the name of the DLL as well as its version
number and a set of procedures imported from the DLL. We currently extract only the
name of the DLL from these entries. The 16-bit Windows executables contain only a
single import entry that lists the modules that it imports. 32-bit and 16-bit imports also
differ in their form. 32-bit executables may import modules that have a number of
different extensions, of which the vast majority are “dll,” but 16-bit imports list only
the name of the import, without an extension.

4 DROID: http://droid.sourceforge.net.
5 Libsharedmime: http://www.memecode.com/libsharedmime.php.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.memecode.com/libsharedmime.php
http://droid.sourceforge.net/

104 Dependency Analysis

As a concrete example, consider a 32-bit Windows executable “RS32E301.EXE,”
which is a 32-bit version of Adobe Acrobat Reader. The dependency information for
one of the DLL imports looks like this when it comes from the Open Watcom6 dump
utility:

Import Directory Table
===
rva of the start of import lookup tbl = 0001B050H
time/date stamp = 00000000H
major version number = 0000H
minor version number = 0000H
rva of the Dll asciiz name = 0001B936H
rva of the start of import addresses = 0001B260H
DLL name = <GDI32.dll>

Import Lookup Table
===================
import hint name/ordinal
====== ==== ============
0001B8A2 64 CreateSolidBrush
0001B886 55 CreatePen
0001B892 70 DeleteObject
0001B8B6 284 MoveToEx
0001B8C2 331 SelectObject
0001B8D2 281 LineTo
0001B8DC 98 ExtTextOutA
0001B8EA 371 SetTextColor
0001B8FA 337 SetBkColor
0001B908 262 GetTextExtentPoint32A
0001B920 322 RestoreDC
0001B92C 324 SaveDC

Import Address Table
====================
00:0001B8A2 01:0001B886 02:0001B892 03:0001B8B6
04:0001B8C2 05:0001B8D2 06:0001B8DC 07:0001B8EA
08:0001B8FA 09:0001B908 10:0001B920 11:0001B92C

The dump utility extracts a number of elements including the name of the DLL,

“GDI32.dll,” the minor and major versions, and the set of procedures that are imported
from the DLL. Each import entry in the executable contains information of this type.
At present, our program produces an XML summary of this information:

 <program path="RS32E301.EXE">
 <checksum>2aa93dc52cda47731b77d90dc2773ce1d5710b9e</checksum>
 <imports>
 <module>GDI32.dll</module>
 <module>USER32.dll</module>
 <module>KERNEL32.dll</module>
 </imports>
 </program>

Programs can only successfully run when they are given modules that sufficiently

match the version with which the program was original compiled. Therefore, to
emulate multiple software packages the emulator may need to provide multiple,
possibly conflicting, modules to different programs. Unfortunately, it is not always

6 Open Watcom: http://www.openwatcom.org.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.openwatcom.org/

Aaron Hsu and Geoffrey Brown 105

clear what compatibility issues exist, and the related information is currently diffuse
and not in machine readable form. For example, the MSDN7 contains some resources,
including knowledge base entries and other tables indicating what versions are
compatible with what installations, operating system versions, or other systems, but
these entries consist of English prose and present a problem for any program that tries
to extract this information. The problem of DLL incompatibility (“DLL Hell”) is
nicely summarized in Wikipedia8 along with a number of specific examples; however,
there is a significant amount of work remaining to convert this folk-knowledge into a
useful tool.

A problem related to missing modules occurs when an application installs its own,
incompatible versions of common DLLs on a system. In principle, the tool described
in this paper can be used to determine the DLLs distributed with an artifact and that
information could be used to flag such DLL “stomping.”

Detailed Results
Total Executables 3596 + 48 16-bit Modules 75 + 18

Unique Executables 690 + 41 32-bit Modules 83 + 14

Unique Modules 158 + 32 Frequent Modules
(>100 References)

26

Table 1. Basic Dataset Statistics.

Table 1 details the results of processing our collection of images. The results show
the counts for the GPO collection plus the counts of the commercial CD-ROMs that
we tested. Programs were compared for uniqueness based on their SHA-1 hashes.
Interestingly, only 26 of these modules were used more than roughly 100 times.

Note that while we have identified the vast majority of executables in our archive,

because of the conservative and relatively simple heuristics that we employ (detailed in
the next section), there could have been additional executables that we did not
recognize.

Most programs imported modules that related in some way to Microsoft products,

including references to Visual Basic, Office and Windows. Indeed, all of the most
frequently used modules were Microsoft related DLLs or 16-bit versions of the same.
The frequency of each module quickly drops into the single digits after the most
frequent modules. Figure 1 graphs this trend.

Figure 1 reveals a steep decline in frequencies for less popular modules. Many of
these programs were installers or viewers, so it makes sense that they would use fewer
non-standard modules. Among the discovered 32-bit DLLs, 34 of them did not appear
to have any relation to Microsoft products or services, but the other 49 were related to
Microsoft in some way or another. As previously noted, programs rarely imported
these 34 modules, and often a module was imported by only one program.

No programmable interface exists to see which DLLs relate to Microsoft and

which do not. Instead, we manually searched for each DLL in the Microsoft Developer
Network, looking for references. If we found a reference indicating that the DLL had
some relation to a Microsoft product, we recorded this as a positive relation.
7 MSDN: http://msdn.microsoft.com.
8 DLL Hell – Wikipedia: http://en.wikipedia.org/wiki/DLL_hell.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://en.wikipedia.org/wiki/DLL_hell
http://msdn.microsoft.com/

106 Dependency Analysis

Otherwise, we classified it as a third party module. We do not know of any publicly
available API for accessing this information without requiring time consuming and
tedious manual searching.

Figure 1. Frequencies of Each Module.

While the majority of these ISOs came from the GPO archive, and thus, some
regularity was expected, the commercially available CD-ROMs that we tested were
from a wider and more varied sample. The results for these commercial CDs were
consistent with the results from the GPO archive, namely, that there was a strong
decreasing curve from the most common libraries to the least common.

There were troubling DLLs. Some of the Windows DLLs were older versions that
may introduce compatibility issues with newer Windows versions. As long as the
DLLs can be isolated and kept together with their appropriate executables, this
generally won’t be a problem, but many installer programs do not ensure this. While
some of these DLLs actually have version numbers in the name of the DLL that
distinguish the older versions from the newer ones, others do not. For example, some
programs in the archive used Visual Basic as their implementation language. They
depend on the Visual Basic runtime for which they were compiled. In this case, the run
times modules contain version numbers in the file names of the dll, such as “40” or
“50” for Visual Basic 4.0 or 5.0. On the other hand, DLLs like the C runtime or
CTL3D class of DLLs changed over time, without changing their names. Various
articles on the Microsoft Developer Network and other resources document specific
examples of when these incompatibilities may arise. Generally, though, these results
suggest that handling the dependencies for a given software package probably won’t
be too complicated. There may be one or two modules that require some attention on
the occasional piece of software, but for the most part, most programs will use
standard modules or ship them with the program. However, care must be taken to
install the right versions of these DLLs. We did not investigate the introspection of
DLLs for this information.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Aaron Hsu and Geoffrey Brown 107

Implementation and Evaluation
Our program relies on the libarchive library (Libarchive, 2010) to traverse

archives and file systems. Libarchive simplifies the traversal of these archive formats
by providing a uniform API for accessing many different archive formats. To extract
the actual dependencies, we used the Open Watcom compiler toolchain, which
supports module imports for both 16-bit and 32-bit Windows executables. Each of
these presented a unique set of challenges when targeting our intended task.

Our program was implemented in Scheme and made heavily utilization of the
libarchive extraction library. Libarchive’s easy to use interface architecture and
stream-oriented API made it quite suitable to the task of bulk analysis and extraction.
It also handles a wide range of archive formats, particularly ISO and Zip formats,
excepting some of the Microsoft archive formats, for which we investigated the use of
additional libraries. Libarchive’s architecture made it quite easy to recur through
nested levels of archives and to avoid excessive memory requirements during the
extraction.

Libarchive did not perform flawlessly, however. A number of changes and bug
reports were filed and subsequently fixed upstream due to non-standard ISO images or
features of the images (such as dual filesystem ISOs). The developer community for
libarchive responded rapidly to these reports, so their impact was, fortunately,
minimal. However, for certain tasks, libarchive may not be the most suitable, so
additional functionality pulled from other libraries could improve the overall
robustness of the system.

As our program walks through the archives, if it identifies an executable
(currently, we identify executables by extension), it spawns a subprocess to operate on
that executable. We parse the output from the Open Watcom toolchain, which gives us
the necessary dependency information. We found that Open Watcom provides a more
cohesive and encompassing solution for 16-bit and 32-bit executables than other
common utilities, though in the future we may modify these utilities to support
programmatic access that does not require sub-process communication.

We chose to use file extension and pattern matching to recognize valid
executables instead of doing more complex file inspection because of the relative
complexity of the two solutions. While file inspection is a more robust and complete
way of identifying executable content, it is also much more complex to implement.
However, if we were to deploy our toolset in a wider context, using file inspection is
the more robust choice.

Related Work
Emulation has been widely discussed as a preservation strategy for digital artifacts

such as multimedia presentations that are intimately tied to their original
hardware/software platform for interpretation (McCray & Gallagher, 2001; Gilheany,
1998; Heminger & Robertson, 2000; Rothenberg, 1995; Rothenberg, 2000a;
Rothenberg, 2000b). Emulation has been successfully tested to preserve individual
artifacts such as the BBC Doomsday book project and various multimedia art works
(Mellor, 2003; Solomon R. Guggenheim Museum, 2004), but it has not been tested as
a means for preserving a large collection of digital artifacts.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

108 Dependency Analysis

Many research projects have explored the use emulation to preserve data or
programs for which strategies involving migration or encapsulation with additional
metadata are not appropriate. Some focus on the use of dedicated emulation
environments to provide a high level of authenticity or closely replicate the “look and
feel” of the original environment, particularly where historical and cultural factors
associated with the software are significant (Mellor, 2003). Emulation is also
frequently discussed in the context of preservation planning (Strodl et al., 2007). Until
recently, however, there has been a dearth of published technical material on support
for end-user interaction with emulated systems.

Recently, researchers have begun to directly address formal requirements for the
use of virtualization tools. These include abstractions defined in Preservation Layer
Models, as developed in the IBM Digital Information Archival System (DIAS) (IBM,
2009), and ongoing efforts to provide flexible access to a variety of emulation
environments in client-server model such as GRATE (Global Remote Access to
Emulation), as described by von Suchodoletz (Suchodoletz & Hoeven, 2008) and
Rechert (Rechert et al., 2009). The HUBzero Platform for Scientific Collaboration
(Purdue University, 2009) is a distributed system enabling scientists to conduct
simulations in software tools written for legacy platforms via a VNC client, accessible
via a web site.

Conclusions
This paper addresses the problem of determining software library dependencies

for programs (executables) distributed with digital artifacts. As we have discussed,
even where a digital document is distributed with supporting executables, executing
them in an emulation environment requires providing compatible versions of the
necessary software libraries. In this paper, we addressed a key step in this process –
determining the required software libraries for a large collection of artifacts originally
distributed on CD-ROM.

As we show, existing open source tools provide much of the functionality
necessary for extracting dependency information for an archive of such programs, but
a single tool capable of traversing an artifact containing compressed archives was not
available. We implemented such a tool, producing the dependency information in a
machine readable format.

Our results indicate that the Operating System itself will likely provide for a
significant majority of the modules, while a small number of external dependencies
will need to be managed explicitly to ensure that the right versions are available.
Additionally, there are issues of compatible versions of modules across operating
system and software versions.

Missing from our work, and necessary to make dependency analysis scalable, is a
database of known software modules and any incompatibilities. As we have shown, the
total size of this database can capture the common cases with a relatively small number
of entries.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Aaron Hsu and Geoffrey Brown 109

Disclaimer
This material is based upon work supported by the National Science Foundation

under grant No. IIS-1016967. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
Bearman, D. (1999). Reality and chimeras in the preservation of electronic records. D-

Lib Magazine 5, (4). Retrieved January 11, 2011, from
http://www.dlib.org/dlib/april99/bearman/04bearman.html.

Nixon Presidential Library & Museum. (2007). Deep Throat Unveiled. Retrieved
January 11, 2011, from
http://www.nixonlibrary.gov/forresearchers/find/subjects/deepthroat.php.

Gilheany, S. (1998). Preserving digital information forever and a call for emulators.
Digital Libraries Asia 98: The Digital Era: Implications, Challenges, and
Issues. Singapore: Archive Builders.

Granger, S. (2000). Emulation as a digital preservation strategy. D-lib Magazine 6,
(10). Technical Report: Corporation for National Research Initiatives.

Haldeman, H.R. & Ambrose, S. (1994). The Haldeman diaries inside the Nixon White
House: The complete multimedia edition. Santa Monica: Sony Electronic
Publishing.

Heminger, A. R., & Robertson, S. (2000) The digital rosetta stone: a model for
maintaining long-term access to static digital documents. Communications of
AIS 3, (1). Atlanta, GA: Association for Information Systems.

Purdue University. (2009). HUBzero: Platform for Scientific Collaboration. Retrieved
January 11, 2011, from http://hubzero.org.

IBM. (2009) IBM NL’s Center of Excellence for Long Term Digital Information
Usability. Retrieved January 11, 2011, from http://www-
935.ibm.com/services/nl/dias/.

Libarchive. (2010). Retrieved August 5, 2010, from http://libarchive.googlecode.com.

McCray, A.T., & Gallagher, M.E. (2001). Principles for digital library development.
Commun. ACM 44, (5). New York, NY: ACM.

Mellor, P. (2003). CaMiLEON: emulation and BBC doomsday. RLG DigiNews 7, (2).
Online Publication: RLG (OCLC).

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://libarchive.googlecode.com/
http://www-935.ibm.com/services/nl/dias/
http://www-935.ibm.com/services/nl/dias/
http://hubzero.org/
http://www.nixonlibrary.gov/forresearchers/find/subjects/deepthroat.php
http://www.dlib.org/dlib/april99/bearman/04bearman.html

110 Dependency Analysis

Rechert, K., von Suchodoletz, D., Welt, R., van den Dobblesteen, M., Roberts, B., van
der Hoeven, J., & Schroder, J. (2009). Novel workflows for abstract handling
of complex interaction processes in digital preservation. Proceedings of the
Sixth International Conference on the Preservation of Digital Objects. San
Francisco, California.

OpenBSD. (2010). OpenBSD reference manual. Retrieved August 6, 2010, from
http://www.openbsd.org/cgi-bin/man.cgi?query=file.

Rothenberg, J. (1995). Ensuring the longevity of digital information. Scientific
American 272, (1). New York: Communications Data Services.

Rothenberg, J. (2000a). An experiment in using emulation to preserve digital
publications. Technical report for Koninklijke Bibliotheek. Zuid-Holland,
Netherlands: The Koninklijke Bibliotheek.

Rothenberg, J. (2000b). Using emulation to preserve digital documents. Technical
report for Koninklijke Bibliotheek. Zuid-Holland, Netherlands: The
Koninklijke Bibliotheek.

Solomon R. Guggenheim Museum. (2004). Seeing double: Emulation theory and
practice. Retrieved January 11, 2011, from
http://www.variablemedia.net/e/seeingdouble/home.html.

Strodl, S., Becker, C., Neumayer, R., & Rauber, A. (2007). How to choose a digital
preservation strategy: evaluating a preservation planning procedure.
Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries.
New York, NY: ACM.

von Suchodoletz, D., & van der Hoeven, J. (2008). Emulation: From digital artifact to
remotely rendered environments. iPRES 2008: Proceedings of the Fifth
International Conference on Preservation of Digital Objects. St. Pancras,
London.

Woods, K., & Brown, G. (2008). Creating virtual CD-ROM collections. Proceedings
of the 5th International Conference on Preservation of Digital Objects.
London: UK.

Woods, K., & Brown, G. (2009a). Creating virtual CD-ROM collection. International
Journal of Digital Curation 4, (2).

Woods, K., & Brown, G. (2009b). Assisted emulation for legacy executables.
Proceedings of the 5th International Digital Curation Conference, 2009.
London: UK.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.variablemedia.net/e/seeingdouble/home.html
http://www.openbsd.org/cgi-bin/man.cgi?query=file

	Abstract
	Introduction
	Module Dependencies
	Basic Results
	Executables

	Detailed Results
	Implementation and Evaluation
	Related Work
	Conclusions
	Disclaimer
	References

