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Abstract

Validation is a key task of any preservation workflow and often JHOVE is the first tool 

of choice for characterizing and validating common file formats. Due to the tool’s 

maturity and high adoption, decisions if a file is indeed fit for long-term availability are 

often made based on JHOVE output. But can we trust a tool simply based on its wide 

adoption and maturity by age? How does JHOVE determine the validity and well-

formedness of a file? Does a module really support all versions of a file format family? 

How much of the file formats’ standards do we need to know and understand in order to 

interpret the output correctly? Are there options to verify JHOVE-based decisions 

within preservation workflows? While the software has been a long-standing favourite 

within the digital curation domain for many years, a recent look at JHOVE as a vital 

decision supporting tool is currently missing. This paper presents a practice report 

which aims to close this gap.
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Introduction

The results of the 2015 OPF community survey lists JHOVE, alongside DROID, as the 

most important workflow tool in digital curation and preservation environments (OPF, 

2015a). JHOVE, which derives its name from its 20051 origin as the “JSTOR/Harvard 

Object Validation Environment”, was designed as a flexible and extensible framework 

in which modules support different file formats. The software may be used as a stand-

alone tool, but it is also frequently embedded in preservation systems such as 

Preservica, Archivematica or Rosetta, as well as in extended repository solutions for 

digital preservation or research data management.

The wide-spread use of the tool may lead especially inexperienced users to follow 

the tool’s output blindly. But is JHOVE indeed the authoritative voice on file format 

validation? Can we trust the output? Do we know and understand what it is based on?

JHOVE is a modular tool with a framework layer for generic tasks and a module 

layer for the actual file format analysis. As this paper deals with the validation aspect in 

regards to specific formats, the focus is on the module layer. For the scope of this paper 

three of the 15 different format modules2 were chosen: PDF, TIFF and JPEG. The 

reasoning behind choosing these three modules is presented in the Background section 

of this paper, which will also include a brief discussion of what constitutes a digital 

object’s ‘well-formed’ and ‘valid’ status.  The Methodology section will describe the 

criteria used against the three modules in their respective evaluation sections. The 

evaluations of the three modules is presented in separate chapters, describing the status-

quo as well as current work being undertaken by the digital preservation community to 

improve the trust in and usability of the JHOVE modules. The paper concludes with a 

brief conclusion and outlook.

Background

Format Selection

The file formats PDF, TIFF and JPEG and their respective JHOVE modules were 

chosen based on the criteria ‘usage of format’, ‘complexity of format’, ‘complexity of 

module’. The authors set out to evaluate three modules that validate popular file formats 

which differ in file format complexity, subsequently leading to different complexity on 

the JHOVE module layer as well.

The wide usage of the PDF format is of course not limited to digital archives. Duff 

Johnson’s 2014 study on popular document formats on the web showed that 77% of the 

returned hits were PDF (Johnson, 2014). The TIFF format, on the other hand, still is the 

most widely used preservation master format in digital archives, depending on the study 

between 87 to 94% use TIFF as their digital preservation master format (Wheatley et al., 

1 The first production release of JHOVE was dated 2005-05-26. See: 

https://web.archive.org/web/20060118221635/http://hul.harvard.edu/jhove/news.html 
2 One module may support different versions of a format. At the time of writing this paper, the following 

modules were available: AIFF, ASCII, GIF, GZIP, HTML, JPEG, JPEG2000, PDF, PNG, TIFF, UTF-8, 

WARC, WAVE, XML and BYTESTREAM.
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2015). As for the JPEG format, it remains a widely supported format on a global scale, 

entering digital archives through various workflows (Library of Congress, 2013).

The formats differ significantly in complexity, with the PDF file format family 

being the most complex, making validation a challenging task. This also reflects in the 

JHOVE module with sometimes misleading error output, posing a potential risk when 

basing preservation decisions solely on the verdict of JHOVE. Recently discovered 

misinterpretations of the standard in the module, such as in the case of CrossRefStream 

values, have been leading to false negatives3. TIFF, on the other hand, is a clearly 

defined standard, resulting in a JHOVE validation module with comprehensible findings 

and reliable output for preservation purposes. Due to the format’s wide adoption and 

stability, as well as to the straightforwardness of the standard, other tools such as the 

validators LibTIFF4 or DPF Manager5 exist and can be used to verify JHOVE module 

output. While the JPEG file format standard ranges between PDF and TIFF when it 

comes to the format’s complexity, the JHOVE-module is an example for a low-level 

validation module – it has not been updated since 2007 and only validates against 11 

criteria, most of them being header values for the different JPEG formats covered. The 

question at hand is if this really is sufficient validation for digital preservation purposes. 

Other tools such as Bad Peggy6 exist to validate specific JPEG file format family parts 

and can be used instead of, or in addition to JHOVE.

Table 1 reflects the standards’ and modules’ complexity in number of pages in 

specification for the respective file format and number of possible JHOVE validation 

errors for the respective module

Table 1. Overview analysed formats.

Number of pages in specification Number of possible JHOVE errors

PDF 1310 152

JPG 4817 13

TIFF 121 68

Definitions of Well-Formed and Valid

File format validation processes analyse whether a digital object adheres to the 

specification of the format it claims to be. Validation results are usually broken down 

into two different conformance levels: well-formed and valid. An XML file, for 

example, is considered to be well-formed when it meets a fixed set of criteria as defined 

in the W3C Extensible Markup Language Standard document8. While well-formed 

XML objects comply with the XML specification, valid XML objects comply with an 

XML schema. In short, well-formedness addresses the syntactic correctness while 

validity describes the semantic correctness of an object’s conformity to the file format it 

purports to be.

3 See Github bug report for JHOVE: https://github.com/openpreserve/jhove/pull/97 
4 LibTiff: http://libtiff.org/ 
5 DPF Manager: http://dpfmanager.org/index.html 
6 Coderslagoon: Bad Peggy 2.1: https://www.coderslagoon.com/#/product/badpeggy 
7 Without amendments and references (ISO/IEC 10918). See: https://jpeg.org/jpeg/index.html 
8 To give an example: to be well-formed, all elements within an XML must be delimited by start and end 

tags

IJDC  |  General Article

https://jpeg.org/jpeg/index.html
https://www.coderslagoon.com/#/product/badpeggy
http://dpfmanager.org/index.html
http://libtiff.org/
https://github.com/openpreserve/jhove/pull/97


doi:10.2218/ijdc.v12i2.578 Michelle Lindlar and Yvonne Tunnat   |   289

While plain prescriptions of well-formedness and validity would be desirable within 

any standard documentation, the information is not always easy to find and often even 

ambiguous. An example for this is the PDF standard, where the requirements for well-

formed objects are to be described in chapter 3.4 on file structure. However, this chapter 

also introduces characteristics which are optional, such as the newly introduced object 

streams – along with required dictionary values if the object is contained within the file. 

Unfortunately, this makes it very hard to derive exact requirements from the 

specification (Adobe, 2004).

The JHOVE modules contain clear descriptions of how well-formedness and 

validity of the file format is defined in the context of the module and what 

characteristics of the digital object’s file format are checked.

The term ‘validation’ may in itself become ambiguous in a curational context. While 

JHOVE extracts technical metadata which may allow checking the digital objects’ 

compliance to institutional policies (e.g., only uncompressed TIFF), it is not a policy 

checker. To better differentiate between these different concepts of ‘validity’, the 

PREFORMA project, which has put forth the software DPF manager, veraPDF and 

MediaConch, calls these tools ‘conformance checkers’, differentiating between 

‘implementation checker’ (i.e., the standard) and ‘policy checker’ (i.e. institutional 

requirements) layers (PREFORMA, 2015).

Methodology

We set out evaluating JHOVE from a practitioner point of view by taking one step back 

and asking ourselves what we actually expect from a validation tool. The criteria were 

then grouped into categories and assigned to either the framework or the module layer 

of the software. The result of this process is shown in Figure 1. The categories 

pertaining to the module level are briefly explained below.

Figure 1. Traits of a valid validation tool – grouped into module and framework layers.
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Coverage and Stability

In general, two aspects about a module’s degree of coverage are relevant: how much 

of the file format family, meaning different versions, is covered by the module and how 

reproducible the validation results are over the course of time, i.e. throughout different 

module versions. The answer to the latter is a generic one for JHOVE. Since 2013, the 

software has been located on Github, allowing code changes to be tracked via 

versioning. Prior to that, JHOVE was made available via Sourceforge, where the code 

revision history is still available9. The versioning of the software allows a view of 

different software versions over time, as changes to code which may have an effect on 

validation outcome can be tracked. Furthermore, the OPF conducts an automatic 

regression testing routine for JHOVE when a new version is released. 10 For this, the 

modules are run against a fixed test-corpus and the outcomes compared to those of the 

previous version (OPF, 2015b). Being under the stewardship of the OPF, JHOVE 

development and maintenance is being monitored closely and regulated by a product 

board.11 The degree to which a module covers a file format family differs from module 

to module and is covered in the respective module evaluation sections.

Output

The output of the validation tool describes whether an object adheres to the file format 

standard and is indeed well-formed and valid. If the object is not well-formed and valid, 

error messages shall exist, informing the user of where and how parts of the file violated 

the file format standard rules. As validation tools are often integrated into a larger 

workflow solution, the output should be both human and machine-readable. This is the 

case for all JHOVE modules. Ideally, the error message is furthermore intelligible for 

the decision maker who analyses the errors, and, if applicable, includes a workflow 

suggesting how to deal with the error. If there is no such thing and the error message 

cannot be understood, there is nothing left to do but to trust the tool and reject the file. 

This is why the transparency and intelligibility is an important factor for the evaluation 

of a JHOVE module.

Validation Rules

The validation rules used by the modules to check a file’s conformance must be correct 

and complete. There are two possible erroneous deviations: If a tool marks a file which 

does not adhere to the specifications regulation as valid, this is a false positive. If on the 

other hand, the tool marks a file which complies with the standard as invalid, this is a 

false negative.

There are different ways in which the correctness of validation rules can be 

evaluated. One method is to knowingly create files which either conform to or violate 

certain aspects of the standard. This, of course, requires a solid understanding of the 

standards. A second method is to rely on rendering software, following the assumption 

that it was developed to interpret the file formats as described in their respective 

standards. However, this is not necessarily the case, as viewers are often tolerant and 

9 Sourceforge revision history: http://jhove.cvs.sourceforge.net/viewvc/jhove/jhove/ 
10 The test-corpus and the scripts used are also available on Github: 

https://github.com/openpreserve/jhove/tree/integration/test-root/corpora 

https://github.com/openpreserve/jhove/tree/integration/jhove-bbt/scripts 
11 JHOVE OPF product page: http://openpreservation.org/technology/products/jhove/ 
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display files which violate the specification. A third method is to compare the output of 

one validation tool against the output of other validation tools. The problem here is that 

not all tools have alternatives to JHOVE (as in the case of PDF), most likely due to the 

high complexity of the format. 

Within the scope of this paper all three methods were used. However, the highest 

focus was placed on the comparison of the validation output to that of other tools.

Module Evaluation – PDF Module

Curator/Digital Preservationist and the JHOVE PDF-module seem to embody the 

biggest love-hate relationship in the community. The module is known to be buggy12, 

yet everyone relies on it.

A described earlier, PDF is a complex format. Additionally, due to the existing 

number of different format versions and profiles, which in return are based on versions 

that are again versioned in themselves13, the lines between the file format family, the file 

format version and the profile seem to become blurry. In light of this, it is crucial to 

understand what the PDF-module checks against.

We are aware that PDF/A is the go-to-format if it’s about long-term availability. 

However, JHOVE is not a tool we would recommend for PDF/A validation. The 

JHOVE PDF module was built for standard-PDF and the PDF/A profile check was 

implemented only as an additional feature. Usually JHOVE does not identify PDF/A 

files correctly and only runs a test against the PDF standard (Friese, 2014).

Alternative Tools

Currently, there are no alternative tools to check the validity of a standard-PDF file. 

However, there are a number of tools or tool suites which help us in further examining 

PDFs. The best known example is most likely Adobe’s Preflight, a structure explorer 

and profile checker released with Adobe Reader Professional. An example for a freely 

available tool is the xpdf14 suite, whose pdfinfo command can extract basic information 

such as the number of pages, the PDF version or if the PDF is tagged or encrypted. 

Another helpful command from the xpdf suite is pdffonts, which returns all fonts used 

in a file, including information such as the object number they are used in and whether 

they are embedded or not. Another excellent resource for troubleshooting problematic 

PDFs is PDFtk15, in particular the tool suite included in the command-line PDFtk Server 

package. PDFtk allows one to decompress encrypted streams, to extract embedded 

metadata and to re-write the cross-reference dictionary.

A myriad of further PDF tools exist, some are wrapping a lot of analysis features, 

others are handling very specific tasks, such as printing the offsets to standard out.16 

While these tools allow one to manipulate and analyse the file format, none of them 

12 See comment from original JHOVE developer Gary McGath on 2014-07-10: “The PDF module has a 

history of bugs relating to page trees, […]. If other software doesn’t complain, I’d be inclined to call 

this a JHOVE bug.” https://sourceforge.net/p/jhove/discussion/797887/thread/2050dc83/ 
13 For example: PDF/X-1a:2001 and PDF/X-3:2002 are based on PDF 1.3, PDF/X-1a:2003 and PDF/X-

3:2003 are based on PDF 1.4,  PDF/X-4 and PDF/X-5 are based on PDF 1.6. 
14 XPDF: http://www.foolabs.com/xpdf/ 
15 PDFtk: https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ 
16 See: http://khkonsulting.com/2013/01/the-trouble-with-the-xref-table/ 

IJDC  |  General Article

http://khkonsulting.com/2013/01/the-trouble-with-the-xref-table/
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.foolabs.com/xpdf/
https://sourceforge.net/p/jhove/discussion/797887/thread/2050dc83/


292   |   How Valid is your Validation? doi:10.2218/ijdc.v12i2.578

tackle a conformance checking against the file format’s standard. This might very well 

be due to the almost overwhelming complexity and flexibility of the file format. 

Due to this, unfortunately an extended comparison of the JHOVE PDF-Module 

against other validation software was not possible.

Coverage and Stability

According to the documentation17, the PDF-module covers the following PDF versions 

and profiles: PDF versions 1.0-1.6, PDF/X-1 (ISO 15930-1:2001), PDF/X-1a (ISO 

15930-4:2003), PDF/X-2 (ISO 15930-5:2003), PDF/X-3 (ISO 15930-6:2003), 

Linearized and Tagged PDF (available since PDF 1.4) and PDF/A-1 (ISO/DIS 19005-

1). This list shows a few obvious gaps: PDF 1.7, which later become ISO 32000-1:2008, 

is not supported. Due to this, files that use features specific to PDF 1.7 or later may be 

reported as not well-formed or not valid. The same holds true for the lacking support for 

PDF/X-5 (ISO 15930-8:2010). Also, profiles such as the universal accessibility 

supporting PDF/UA (ISO 14289-1:2012-07) profile or the in the engineering domain the 

popular PDF/E (ISO 24517-1:2008) profile are not covered18. 

The PDF-module is currently in version 1.7, release date 2012-08-12 as per the 

module information page.

Output

PDF-module error messages are clear but not concise enough. Information such as 

“Invalid page tree node” or “Invalid structure attribute” could benefit from some 

additional information, such as which page tree node and why, or which structure 

attribute. Due to this, it is not easy to tell if the error has an impact on the long-term-

availability of the file or to which paragraph in the PDF standards it refers to, making 

looking for a cure even harder (OPF, 2016a). Troubleshooting PDFs which failed 

validation almost always requires quite a bit of further analysis.

Currently, the OPF is working on more intelligible explanations for the JHOVE 

errors19, taking a first step towards better understanding of the impact. Eventually, this 

will enable the curator to fix the problem, resulting in a valid and well-formed PDF, if 

desired.

Validation Rules

The PDF-module considers a file to be well-formed if it meets the basic syntactical 

requirements regarding header, body, cross-reference table, trailer and end-of-file 

marker.20 Specifics are only described in regards to beginning- and end-of-file marker 

and in regards to the trailer, which must include the cross-reference table size and an 

indirect reference to the document catalogue. In regards to objects, the documentation 

states that they must be “well-formed”. Validity criteria are divided into general validity 

for PDF 1.0-1.6 as well as some profile-specific validity criteria. The software 

information page gives the additional information that the module does not validate data 

within the content streams or encrypted data.

17 See: http://jhove.sourceforge.net/pdf-hul.html
18 JHOVE PDF Module: http://jhove.openpreservation.org/modules/pdf/ 
19 See: http://wiki.opf-labs.org/display/Documents/JHOVE+issues+and+error+messages 
20 See: http://jhove.openpreservation.org/modules/pdf/ 
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Comparing the profile specific validation rules against the profile references it 

becomes clear that JHOVE cannot be a definite validator for all profiles covered, as it 

has already been proven for PDF/A (Friese, 2014). Instead, the majority of the rules 

check towards generic PDF requirements.

As alternative tools do not allow a direct comparison of validation results, false 

positives and false negatives were analysed using existing and manually built 

examples.21 

A common error in JHOVE is that of an ‘Improperly constructed page tree’. This 

error is thrown if the PDF presents pages in page tree nodes which are not balanced, i.e. 

the page tree nodes do not contain an even spread of referenced page objects or page 

tree (sub-)nodes. Although balanced page tree nodes result in a better performance of 

viewers, it is not a requirement of the specification, but instead a concept introduced by 

the Acrobat Distiller Program (Adobe, 2006). As JHOVE reports it to be an error and 

the file to be invalid, this is an example of a false positive.

A false negative example can be easily reconstructed via the rotation property. 

While the rotation property of a page is optional, if present its value must be per 

standard a multiple of 90 (Adobe, 2004). However, JHOVE validates the file as ‘well-

formed and valid’ regardless of the rotation property being 0, 90, 67 or 3. Viewers 

tested22 neglected the invalid value and instead displayed at the default value (0, no 

rotation).

Conclusion for the JHOVE Module

PDF is a mighty format family with several thousands of specification pages. This 

makes the validation process especially cumbersome. The JHOVE PDF-module gives 

us a good starting-set of common denominators for validation criteria across different 

profiles. The syntactical well-formed criteria are crucial for the sustainability of the 

digital object, as basic errors such as missing end of file markers or missing document 

catalogue entries leave the file unrenderable. The PDF-module seems well-suited to spot 

such basic syntactical errors and also to hit ‘high level’ marks of profile validation. 

However, the user needs to be aware of the fact that the module is not suited for a 

complete profile check.

The bad news is that the error messages are hard to interpret, require a good amount 

of file format knowledge and that the module is known to be buggy with quite a few 

false negatives. Thankfully, the community is currently undertaking efforts to address 

this gap. However, it will take time and patience. 

When using the PDF-module it is very important to understand the limitations of the 

module. An institution may choose, for example, to only focus on errors on the ‘well-

formed’ level in a first step and to address the ‘valid’ errors at a later point in time when 

better validation rules are available.

21 The authors extended this work significantly in later research, leading to the publication of a PDF test 

corpus (Lindlar, Tunnat and Wilson, 2017a) and an accompanying publication (Lindlar, Tunnat and 

Wilson, 2017b), exploring JHOVE PDF module validation checks against a synthetic testset
22 Rendering was tested using three viewers: Acrobat Pro 11.0.15., Evidence 2.32, GSView 5.0
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TIFF Module

The TIFF module23 considers a file to be at least well-formed, if nine criteria – mostly 

dealing with the file header and the IFD (image directory file) – are met. Validity is a 

little bit more complex, looking for specific tags, and checking against valid formats 

and ranges of values. 

Alternative Tools

There are many alternatives to check the validity of TIFF files. As the TIFF standard is 

pretty straightforward and easy to understand, it is not complicated to build a TIFF 

checker for one’s needs, and many have done so, e.g. the SLUB Dresden with 

checkit_tiff24.

The DPF manager is an open source conformance checker which checks if a TIFF 

file follows its specification. If it does not, it is marked as invalid, one (or more) error 

messages are provided and for each error the concerned page in the TIFF specification 

is referenced. Furthermore, it is possible to validate baseline TIFF, extended TIFF, TI/A 

and to create your own policies for validation. For this analysis, version 3.1 was used25.

Validation is only a byproduct of ImageMagick26, as it focuses on image creation, 

conversion and editing. It is a command line tool, although a basic GUI for the display 

of images is provided. For this analysis, version 7.0.3 was used. 

ExifTool27 is primarily meant for metadata extraction. It also gathers warnings and 

errors of an image file and can therefore be used for a superficial analysis of the quality 

of images as well. For this analysis, version 10.37 was used.

LibTiff28 runs on UNIX and is able to give some information about the quality and 

the validity of a TIFF file. For this analysis, version 4.0.7 was used.

Coverage and Stability

The module supports the three major versions 4.0, 5.0 and 6.0 as well as standardized 

extensions such as TIFF/IT, TIFF/EP or GeoTIFF 1.029.

Output

JHOVE error messages for the TIFF module are almost generally understandable with a 

minimal level of file format knowledge (OPF, 2016b).

Validation Rules

An analysis run against 166 TIFF files from the Google Imagetestsuite led to the 

detection of several false positives (Tunnat, 2017a). While false negatives are more 

difficult to prove, the same analysis has shown at least two instances of false positive 

hits for the JHOVE TIFF module against the Google Imagetestsuite (Tunnat, 2017b).

23 JHOVE TIFF Module: http://jhove.openpreservation.org/modules/tiff/ 
24 checkit_tiff: https://github.com/SLUB-digitalpreservation/fixit_tiff 
25 PREFORMA DPF manager: http://www.preforma-project.eu/dpf-manager.html 
26 ImageMagick: http://coptr.digipres.org/ImageMagick 
27 ExifTool: http://coptr.digipres.org/ExifTool 
28 LibTIFF – TIFF Library and Utilities: http://www.libtiff.org/ 
29 JHOVE TIFF Module: http://jhove.openpreservation.org/modules/tiff/ 
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Conclusion for the JHOVE module

The only real alternative for JHOVE for TIFF is the DPF manager, which has been 

developed only recently. All the other tools tested are for special needs (Baseline TIFF 

testing for checkit_tiff) or validation is only a byproduct, as for ExifTool and 

ImageMagick. LibTIFF might be an alternative tool, but it does not run on Windows 

and is therefore not easy to embed for Windows users. 

As JHOVE is not free from false positives and most likely not free from false 

negatives as well, it probably should not have the last word in archiving decisions. 

Nevertheless, it is a decent and good working tool and there are no objections against 

using it in digital preservation workflows for a first orientation about the quality of the 

data.

JPEG Module

The criteria JHOVE tests against to determine if a file is well-formed and valid are 

clearly documented: three criteria for well-formedness and five for validity.30 It is no 

surprise that the JHOVE JPEG module consists of 13 possible error messages only. The 

validation tool Bad Peggy can distinguish between at least 30 different JPEG errors. In a 

practical test, 28 different Bad Peggy error messages were found and only eight error 

messages of the JHOVE JPEG module (Tunnat, 2016a).

Alternative Tools

There are some tools out there which are able to check the validity of JPEG files. In this 

paper, we will focus on Bad Peggy31, which is able to validate images like JPEG, PNG 

and GIF and detects damages. It enables the user to find broken files quickly and uses 

the java IO library to do so. It is also integrated in KOST-Val, the validation tool of the 

Swiss KOST. Furthermore, ImageMagick and ExifTool were used, which have already 

been described earlier in this paper.

Coverage and Stability

The JHOVE JPEG module supports JPEG (ISO/IEC 10918-1:1994), JFIF 1.02 (JPEG 

File Interchange Format), Exif 2.0, 2.1 (JEIDA-49-1998) 2.1, and 2.2 (JEITA CP-3451), 

SPIFF (ISO/IEC 10918-3:1997), JTIP (ISO/IEC 10918-3:1997) and JPEG-LS (ISO/IEC 

14495).

Output

Some of the errors are easy to understand (Example: ‘Unexpected end of file’; some are 

not (Example: ‘Marker not valid in context’).

30 JHOVE JPEG module: http://jhove.openpreservation.org/modules/jpeg/ 
31 Community Owned digital Preservation Tool Registry (COPTR) – Bad Peggy: 

http://coptr.digipres.org/Bad_Peggy 
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Validation Rules

To test the reliability of the JHOVE JPEG module, the 98 files of the Google 

Imagetestsuite32 were validated with the alternative tools Bad Peggy, ImageMagick and 

ExifTool. The results were captured in a spreadsheet (Tunnat, 2017b), sorted by 

different criteria. First, all the images that could be rendered by viewers like Paint and 

Windows Photos, second, all images which can be displayed, but somehow look bogus 

(chunks missing, all grey etc.) and lastly, all files which cannot be rendered at all. 

Analysing the output it is likely that JHOVE has one false positive and seven false 

negatives in the sample of 98 JPEG files (Tunnat, 2016c).

The seven false negatives are more worrisome. Bad Peggy and ImageMagick both 

agree that there is something wrong here. Besides, none of the seven files can be 

rendered by a viewer. One would really want some error output from JHOVE here, as 

these files obviously are corrupt. Furthermore, JHOVE misses seven out of 18 corrupt 

JPEG images in the analysis done for a blog post of the Open Preservation Foundation 

(Tunnat, 2016a). Those JPEGs could be opened in a viewer, but all bear some visually 

obvious errors. Bad Peggy, on the other hand, was able to detect all 18 corrupt images.

Conclusion for the JHOVE Module

The JHOVE JPEG module clearly misses quite a few corrupt images, as at least two 

tests have shown, one on the Google Imagetestsuite and one in an OPF Blogpost (see 

above). There is an upside, though, as Bad Peggy is an alternative tool which does not 

seem to miss out any of these files, although an infallibility of Bad Peggy cannot be 

tested within the scope of this paper.

Conclusion

The technological change not only applies to the materials we care for, but also to the 

tools we use within our workflows. This should be reason enough to regularly re-

evaluate the tools we embed and base our preservation decisions on. As far as JHOVE is 

concerned, we know that it is widely adopted, embedded in many digital preservation 

workflows, and has been around for over ten years. However, large parts of the code 

have not been updated in quite a while. While many of us rely on the PDF-module, it 

still does not support PDF 1.7 – a version which was released nine years ago, in 2008. 

While this paper only looked at three JHOVE modules, a recent OPF blog post by 

Johan van der Knijf indicated shortcomings and false positive/negative hits for the 

WAVE module as well (van der Knijf, 2016).

Both authors will continue to use JHOVE in their preservation workflows. However, 

the analysis put forth in this paper shows that supporting measures should be taken. If 

there is an alternative tool available for the file format – as in the case of DPF manager 

for TIFF or Bad Peggy for JPEG – it is recommendable to embed both tools in the 

workflow and to compare the results. Preservation watch activities should include 

constant awareness of new validation tools for the file formats in our archives. 

The analysis has further underlined how crucial community work towards validation 

processes is. The JHOVE framework remains robust – much more robust than the 

validation modules themselves, which have been in place for years – but only now are 

32 Google Imagetestsuite: https://code.google.com/archive/p/imagetestsuite/downloads 
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validation bugs becoming known. The community needs to join efforts in developing 

new validation rules and in checking existing ones against the standard. Recent 

activities lead by the OPF, such as the JHOVE hack day, the Document Interest Group’s 

list of error messages, or the JHOVE product board have been a great start. 

At the end of the day, valid validation can only be achieved if you understand the 

processes behind it and evaluate them regularly.
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