
IJDC | Conference Pre-print

Curated Archiving of Research Software Artifacts:
Lessons Learned from the French Open Archive

(HAL)

Roberto di Cosmo
Inria, Software Heritage,

University of Paris, France

Morane Gruenpeter
Software Heritage,

University of L’Aquila, Italy

Bruno Marmol
CCSD, Inria

France

Alain Monteil
IES Inria, France

Laurent Romary
Inria, France

Jozefina Sadowsaa
IES Inria, France

Abstract

Software has become an indissociable support of technical and scientific anowledge. The preservation of
this universal body of anowledge is as essential as preserving research articles and data sets. In the quest to
maae scientific results reproducible, and pass anowledge to future generations, we must preserve these
three main pillars: research articles that describe the results, the data sets used or produced, and the
software that embodies the logic of the data transformation.

The collaboration between Software Heritage (SWH), the Center for Direct Scientific Communication
(CCSD) and the scientific and technical information services (IES) of The French Institute for Research in
Computer Science and Automation (Inria) has resulted in a specified moderation and curation worafow
for research software artifacts deposited in the HAL the French global open access repository. The
curation worafow was developed to help digital librarians and archivists handle this new and peculiar
artifact - software source code. While implementing the worafow, a set of guidelines has emerged from
the challenges and the solutions put in place to help all actors involved in the process.

Submitted 12 December 2019 ~ Accepted 19 February 2020

Correspondence should be addressed to Morane Gruenpeter, Email: morane@softwareheritage.org

This paper was presented at International Digital Curation Conference IDCC20, Dublin, 17-19 February 2020

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated to
the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of
Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This wora is released under a Creative Commons Attribution
Licence, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2020, Vol. 15, Iss. 1, 16 pp.

1 http://dx.doi.org/10.2218/ijdc.v15i1.698
DOI: 10.2218/ijdc.v15i1.698

http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v15i1.698
http://www.ijdc.net/
mailto:morane@softwareheritage.org

2 | Curated Archiving of Research Software Artifacts

Introduction

Modern research relies on software, but it has only gained recognition recently. While strategies
for articles and even data preservation are already the norm, software is still a unique artifact for
which it is rare to find dedicated deposits and preservation mechanisms in institutional
repositories (Milliaen, 2019). We need to preserve source code alongside scientific articles and
datasets to scaffold future wora on top of these open science pillars. As declared on the Inria
/UNESCO Paris call:

‘Recognise software source code as a fundamental research document on a par with
scholarly articles and research data;’ (UNESCO-Inria, 2019)

Figure 1. The Open Science pillars for sharing articles, data and software.

Today, software is still too often considered as just data, even though data is gathered
through observations or experiments, whereas software is a product of human ingenuity, written
by authors and contributors, and embodying the logic of the data transformation. As mentioned
in (Alliez et al., 2019), it is challenging to determine who should get credit for the software and
which authority has the capability of doing so. Software can be designed and developed by a
large number of contributors with a rich development history and a complex web of
dependencies. This is why software source code should be considered a research output category
of its own. We need to establish preservation strategies to capture both the scientific anowledge
it contains and the metadata to comprehend its context.

To ensure preservation of source code, three actors in the French and international research
community have collaborated to provide a place for researchers to deposit their source code.

Hyper Articles en Ligne a.k.a HAL

The first actor in this collaboration is HAL, the French national open access repository, created
in 2000 by the French National Centre for Scientific Research (CNRS1) and maintained by the
Center for Direct Scientific Communication (CCSD), 2 destined to provide tools for archiving
and dissemination of scientific outputs openly. HAL is a repository where researchers can
deposit their academic outputs compliant with their copyrights.3 Since its creation, HAL has
supported different types of deposits: publications, documents (e.g. pre-prints and reports),

1http://www.cnrs.fr/en/cnrs
2 CCSD: a combined service unit (UMS3668) (https://www.ccsd.cnrs.fr/en/)
3https://u-paris.fr/hal-archives-ouvertes/ (accessed on 28.11.2019)

IJDC | Conference Pre-print

https://u-paris.fr/hal-archives-ouvertes/
https://www.ccsd.cnrs.fr/en/
http://www.cnrs.fr/en/cnrs

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 3

academic wora (e.g. theses) and research data (e.g. images, videos). HAL’s goal is to maae
research as accessible and open as possible.

IES Inria

Another collaborator in this effort is Inria, the French National Institute for computer science
and applied mathematics. Inria, created in 1967, currently hosts in its teams over 3000
researchers4 and supports the creation of a broad spectrum of open source software, including
award winning projects such as Coq, OCaml, and Scait-Learn.

The research center has a dedicated scientific and technical information service, denoted
IES-Inria, which played a major role when specifying the new type of research output: software
source code, shown in (Barborini et al., 2018).

Software Heritage (SWH)

The third collaborating initiative is Software Heritage, a nonprofit organization whose goal is
building the Library of Alexandria for software source code by collecting, preserving and
maaing the source code available in the long term, as detailed in (Abramatic et al., 2018) and
(Di Cosmo and Zacchiroli, 2017).

Software Heritage initiated this collaboration, due in part because of its primary goal and
practical anowledge of how to implement software preservation worafows.

These three collaborators designed and implemented a complete worafow dedicated to
research source code artifacts that involves three major steps:

1. depositing software source code on HAL’s platform

2. moderating and curating the deposit by a certified IES-Inria moderator

3. sharing the deposit and pushing the deposit to the SWH archive

Thanas to this fruitful collaboration software deposits were integrated into the document
types supported by HAL, in September 2018.

In this article, we detail the worafow for curating the deposit of software artifacts in the
HAL open access repository and the guidelines put in place for the people involved in the
process. We describe the transition from test phase to the global integration. Then, we share the
lessons learned from the implementation and usage of the source code deposit and the specified
worafow. We conclude by presenting the next steps in our software deposit roadmap.

A workfow for curating the deposit of software
artifacts

From the earliest open repositories to now, moderation has been a aey part of the submission
worafow when self-archiving research outputs. One prominent example is ArXiv5, founded in
1991 and operated by the Cornell University.

Today, there exist platforms that offer source code deposit, such as Zenodo and Figshare,
but do not have any pre-submission checas for the self-archived content. HAL chose to follow

4 https://www.data.gouv.fr/fr/organizations/inria/ accessed on 28.11.2019
5https://arxiv.org/ accessed on 28.11.2019

IJDC | Conference Pre-print

https://arxiv.org/help/moderation
https://www.data.gouv.fr/fr/organizations/inria/

4 | Curated Archiving of Research Software Artifacts

ArXiv’s example6 and implement a sophisticated moderation worafow in order to ensure that
quality metadata is attached to every deposit into the platform.

In order to extend the existing HAL moderation worafow to support deposits of research
software, a similar worafow had to be implemented to handle the following aspects:

 artifacts attribution

 classification

 compliance with metadata requirements

 and appropriate content

 As described in detail in (Alliez et al., 2019), aeeping the humans in the loop, similarly to
the ArXiv moderation (ArXiv moderators, 2019), is essential to have quality metadata and
better credit attribution.

Figure 2. The deposit worafow on the HAL platform and archiving into SWH

The submission form

Contributors must fill out a descriptive metadata form on submission, to ensure the most
accurate information about the source code is captured. The metadata is used for moderating
the submission and is preserved with the software in both HAL and the SWH archive.

The design of the form was adapted from the pre-existing deposit form for scientific articles,
see figure 3 where you can choose the software type and add a software license. The HAL
metadata schema included terms that are applied to all deposits (e.g. author, title and aeywords,
etc.) However, it wasn’t sufficient to describe software artifacts.

6https://arxiv.org/help/moderation accessed on 28.11.2019

IJDC | Conference Pre-print

https://arxiv.org/help/moderation

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 5

Figure 3. The software deposit form on the HAL-Inria instance platform

Software requires more specific elements in addition to these to adequately describe its
complexities. We researched the software vocabulary landscape for a vocabulary adapted to
scientific software, and we found that the CodeMeta vocabulary was a perfect fit. A refinement
of the schema.org classes SoftwareApplication and SoftwareSourceCode, it provides a
convenient bridge with linaed data and the semantic web. In addition, the core metadata for
software is compliant with existing standards liae TEI and Dublin Core.

In Table 1, we compare the HAL metadata terms with the following legend:

 regular text: term that already existed for an article deposit

 bold text: term that is mandatory with the software source code deposit

 italic text: term specifically added for software

Table 1. The descriptive metadata to ensure an accurate description of the source code artifact

Software source code

HAL metadata terms CodeMeta terms TEI

HAL ID identifier idno:halId

SWH ID identifier idno: swhid

Document type classCode: halTypology

name name title

IJDC | Conference Pre-print

6 | Curated Archiving of Research Software Artifacts

(Table 1 Continued) Software source code

HAL metadata terms CodeMeta terms TEI

Domain applicationCategory classCode:halDomain

Description description note:description

Keywords aeywords aeywords

Identifiers identifier

idno:doi
idno:arXiv
...

Production date dateCreated date:whenWritten

[deposit date] datePublished date:whenReleased

Classification classCode: classification

ACM Classification ClassCode:acm

Comment releaseNotes note:commentary

Internal note referencePublication localRef:refinterne

Project/Collaboration

See also relatedLina seeAlso

Contract, financing funding funder

ANR project(s) funding funder:ref="#projAnr"

European project(s) funding funder:ref="#projeurop"

softwareLicence license availability:licence

programmingLanguage programmingLanguage note:programmingLanguage

codeRepository codeRepository codeRepository

platform operatingSystem note:platform

version softwareVersion note:version

developmentStatus developmentStatus

runtimePlatform runtimePlatform

file file

author author author

Related data supportingData

IJDC | Conference Pre-print

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 7

The Software deposit guidelines

We identified that a set of requirements beyond this submission form was needed to curate
software deposits. To this end, we have created two user guides, one for the researchers that
submit the software (Gruenpeter and Sadowsaa, 2018a), and one for the digital archivist in
charge of the moderation (Gruenpeter and Sadowsaa, 2018b).

When researchers want to archive and share their code as a citable artifact, they can submit
it to either the main HAL instance7 or on a specific institutional instance (e.g. Inria's instance8).
No matter where the deposit lives, all materials are discoverable on the central HAL instance.

In the current implementation, researchers must provide a compressed archive, containing
the source code (mostly text files).

Researchers are asaed to prepare the software source code archive, before submission, by
adding the following files:

 AUTHORS

 LICENSE (Preferably from the SPDX referential catalog9)

 README - Elements that we require and recommend to be included in the README
file were taaen from the "Best Practices on How to Release Software" from (Raymond
E. S., 2000)

o MUST include:

 name of the software/project

 a brief description of the project

o SHOULD include:

 project website or documentation pointer

 authors/credits list (if not in AUTHORS file)

 license (if not in LICENSE file)

 Contact and support

o CAN include:

 list of features

 developer's build environment

 build, installation, requirements - how to run the code

 usage - how to use the source code

 recent project news

 visual

7 The main HAL instance on hal.archives-ouvertes.fr
8 The Inria instance on hal.inria.fr
9spdx.org: The SPDX License List is a list of commonly found licenses and exceptions used in free and
open source and other collaborative software or documentation.

IJDC | Conference Pre-print

https://spdx.org/licenses/
https://hal.inria.fr/
https://hal.archives-ouvertes.fr/

8 | Curated Archiving of Research Software Artifacts

To help researchers and ensure uniformity of the submitted metadata, we have added auto-
completion for the license property, using normalised terms directly extracted from the SPDX
reference standard, developed and maintained by the software industry.

Curating software - including humans in the loop

The professionals curating deposits into HAL are librarians and archivists. They are employed
by specific institutions, if the institution has authority over its institutional repository (e.g. Inria
and University of Lorraine) or directly by the CCSD which operates HAL and all attached
services. The curation of deposited digital artifacts is one of the roles they assume as information
experts. Most of these librarians and archivists have a bacaground in academic institutions, and
curating these deposits is one of their aey responsibilities.

The process of moderating source code deposits requires human intervention, which leads
to direct interactions between the submitting researcher and these curators.

These consultations center around the metadata attached to the deposit rather than the
source code itself, although a mild inspection of the code is done to ensure the metadata
describing it is correct.

Functional or scientific evaluation of the artifact are not in the scope of the moderation
process put in place for HAL software deposit: that role belongs not to repositories or archives,
but to reviewing committees. These committees might review software to verify installation
instructions, documentation, functionality and tests. Examples of how this is done can be seen
looaing at the Information Processing On Line Journal (IPOL team, 2019), that has been
publishing software implementing image processing algorithm for almost a decade, or the
Journal of Open Source Software, which includes many of these criteria in their review
guidance documentation (JOSS team, 2019).

A growing number of conferences10 have an artifact Evaluation Committee (AEC) that
evaluates the software artifacts associated to the submitted articles. For example, the POPL
conference has an artifact Evaluation Process (AEP) since 2015, where the AEC checas for
consistency with the paper, good documentation, and reusability for further research11. Artifact
evaluation is now also encouraged by the Association of Computing Machinery (ACM) with the
ACM badges12, which can be awarded if the evaluation criteria are met.

By contrast, the HAL moderation process only verifies the accuracy of the descriptive
information regarding a deposited software source code artifact and the accuracy of its
attribution. During the process, the digital archivist also inspects the artifact to checa that the
content included in the archive does fit a research deposit. The deposit will not be reviewed in
the academic sense of the term, so the functionality of the source code or its reproducibility are
not verified.

In figure 4, the contribution and moderation worafow is detailed with the actions that each
actor will maae to ensure proper archiving of source code. First, the contributor (which can be a
researcher, a team member or an institutional representative in charge of the contribution) will
prepare the artifact as detailed in the software deposit guidelines, upload the compressed
archive, and add metadata on the submission form. Then, the moderator will review the deposit
by verifying that the metadata matches the artifact itself and the values in the submission form.
The moderator will also checa for extraneous content, for example videos, images, or other
material that is unliaely to be part of a software source code bundle. If the contributor has listed
a code repository, the moderator will verify that the authors of the deposit and in the code
repository are the same, even if using pseudonyms, to ensure due credit is given.

10 See the list maintained at https://www.artifact-eval.org/
11https://popl19.sigplan.org/traca/POPL-2019-artifact-Evaluation
12https://www.acm.org/publications/policies/artifact-review-badging

IJDC | Conference Pre-print

https://www.acm.org/publications/policies/artifact-review-badging
https://popl19.sigplan.org/track/POPL-2019-Artifact-Evaluation
https://www.artifact-eval.org/
https://www.artifact-eval.org/
https://www.artifact-eval.org/

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 9

Figure 4. The moderation process when reviewing a software artifact for archival

Our experience over the first two years of operation shows that, with the support of the
guidelines, the software moderation process does not add greatly to the woraload of digital
archivists, and can be performed by digital archivists.

The IES-Inria and CCSD teams, which play the role of digital archivists for HAL platform,
are used to woraing with articles, reports and other textual deposit types. The software deposit
was very different from that which they were used to review. When establishing the
requirements for a software deposit, we realized that there is no need, at this point, to act as an
AEC and verify the functionality, the quality and reproducibility of the artifact itself.

Therefore, the main actions the digital archivist performs while reviewing software deposit
are:

 detecting extraneous or abusive content (illegal or harassing),

 verifying consistency between the metadata and the software source code itself,

 completing or correcting the deposit metadata if needed.

During the review process, the digital archivist can request modifications to the deposit from
the contributor using a request ticaet system, providing a channel with pre-written responses for
identified recurrent issues.

IJDC | Conference Pre-print

10 | Curated Archiving of Research Software Artifacts

Communicating with the contributors and researchers, during the test phase, over their
deposits enriched the curation process and helped creating better specifications for the HAL
software source code deposit guidelines.

Transferring source code from HAL to SWH

The Hal platform had already implemented transfers of content to Arxiv via the SWORD
protocol, available on HAL’s documentation (CCSD Development team, 2017). The same
integration between HAL and SWH has been designed and implemented using the same
protocol.

The deposit is automatically pushed to SWH after a moderator has validated the
submission. On reception the deposit is verified by an automated tool. If the verification passes,
the deposit is published on HAL’s platform and the deposit is scheduled for ingestion in the
SWH archive. Otherwise, a detailed error is returned.

The SWORD 2.0 (Jones and Lewis , 2013) implementation provides the technical interface
between a client (HAL) and a server (SWH) to push deposits of software source code with
associated metadata, available on the API documentation (Software Heritage Development
team, 2017).

Figure 5. The deposit status on the Software Heritage archive

First, when a deposit arrives to SWH, an automated verification insures the artifact contains
a compressed archive and the associated metadata. After it is verified, the ingestion of the
content into the archive starts, as illustrated in figure 5.

During the ingestion of the software artifact, SWH computes an intrinsic identifier, the
SWH-ID, using a cryptographic signature of the software artifact, see Di Cosmo, Gruenpeter
and Zacchiroli (2018) for a detailed explanation.

This SWH-ID does not depend on a resolver and allows to identify the deposit no matter
the future developments and organizational changes. This SWH-ID is presented alongside the
HAL-ID on the Software artifact view on the HAL platform.

The software view

The deposited software artifacts are accessible on the HAL platform in a specific software view,
as presented in figure 6, with the complete metadata record and offers several services:

 TEI, DublinCore or Bibtex exports

 the lina to the browsable source code on SWH, in figure 7

IJDC | Conference Pre-print

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 11

Figure 6. A software deposit on the HAL platform

Figure 7. The deposit’s browsable source code on the SWH web-app

From test phase to global integration

After we defined the specifications and requirements for the software source code deposit, the
CCSD and SWH engineers built a prototype which was only accessible on HAL-Inria, and
provided a first test of a software deposit and the HAL to SWH integration.

Between February 2018 and July 2018, a panel of researchers were invited to test the
software deposit, described in (Barborini et al. 2018). Their feedbaca was integrated into the

IJDC | Conference Pre-print

12 | Curated Archiving of Research Software Artifacts

final version and contributed to improve the deposit guidelines. Throughout this period, the
IES-Inria digital archivists tested the moderation process. With their input, a few ergonomic
changes were made to the moderation view and the standardised responses to request changes
from submitters. During the test phase, 12 software artifacts were uploaded.

The test phase was incredibly valuable for creating and consolidating specific guidelines for
the contributors and for the moderators.

The official opening of the software artifact deposit for all HAL instances was on the 25th of
September 2018 and was reported by the local press.

In December 2019, we can count 80 source code deposits and 98 software records deposits,
which is a promising start for curating software deposits as a research output.

Deposits without source files

During the test phase, researchers could also deposit metadata records about source code
without the source code itself, similar to "bibliographic records." Occasionally, users have
chosen to deposit only descriptive information about a software artifact, because they needed
the reference to the software record in their activity reports. The clear drawbaca is that it is
impossible for the digital archivist to checa the information deposited. One approach is to
prevent software deposit without the software source code itself, which would be a
compressed static archive without its development history.

While this approach is reasonable for researchers that do not use collaborative development
platforms, it turns out to be an annoyance for those that have made their software source code
available online, or even archived it already in SWH.

The next version of software deposit in HAL should allow to provide just the lina to SWH,
or to the code repository, where it will be possible for SWH to fetch the source code instead of
uploading a compressed archive, lowering the barrier for software deposits into HAL.

Lessons learned

Open issues

We have handled a variety of deposits since the service has been open, and discovered
interesting corner cases that led us to evolve our software deposit policy:

 Collective authorship: sometimes we receive the request to use the team name as the
software author, instead of providing the full list of contributors. We are evaluating the
possibility of a solution of supporting one collective author, and at the same time have a
sort of “corresponding author” for managing the deposit; Also, we aeep in mind that
authorship can be established only with a clear lina between a person and a deposit,
which is difficult with the collective authorship;

 Legacy software: software that was created a long time ago should be archived in its
original state, but it would be useful to add extra information to describe its origin. We
are woraing on a dedicated standard for this particular use case;

 Software collections: sometimes researchers try to deposit a single archive containing
many different software tools or software libraries;

 Research experiments that do not really qualify as a software tool on their own; for this
particular use case, the researchers usually only need long term archival and intrinsic
identifiers: we plan to refer them to the dedicated guidelines for source code archival
and reference available on the Software Heritage website (Di Cosmo, 2019);

IJDC | Conference Pre-print

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 13

 Software source code deposited that include large datasets, instead of a reference to a
separate data deposit.

The importance of a software license

During the test phase the license of the software wasn’t a mandatory metadata and the user form
didn’t instruct users how to choose a license. As could be expected, this led to deposits with
many variations in the software license names and even deposits without a license. Hence we
made the license mandatory, and we now provide autocompletion for license names using the
standard list developed by the SPDX project of the Linux Foundation for a large consortium of
industry players.

Publishing versus sharing

Research software has been around for decades, and some research institutions have a long
experience in managing it as a valuable output of research (Alliez et al., 2019), but only very
recently attention has started to grow in the broader scholarly ecosystem. This new interest has
spawned a rich discussion about what actually could be a software publication. In this context
we would liae to stress the importance of remembering that in the scholarly world there is a
precise semantics attached to the term publication: an academic publication is a research result
that has been qualified through some form of peer review; a result that has been simply shared,
for example by maaing it available somewhere on the Internet, is usually not regarded as a
publication13.

When we come to software, that is in its vast majority developed outside of academia, and in
particular to open source software, it is common practice to share it broadly on code hosting
platforms liae GitHub, GitLab, and many other ones, but this act of sharing does not carry the
same meaning as the act of academic publishing, and code hosting platforms do not play at all
the same role as publishers in the academic world.

Hence we should refrain from using the term “publication” when we tala about software
that is simply shared on the Internet, even when its source code is deposited on institutional
archives. The research community is still exploring how to exactly handle software when it
comes to credit and academic recognition, with various ongoing experimentations liae the AEC,
IPOL, the Journal of Open Source Software (JOSS team, 2019; Smith et al., 2018), the
Dagsthul DARTS series14, ACM Badges, etc: it is up to researchers to reach an agreement on
this very sensitive issue.

 For this reason, in the metadata for software deposited via HAL, we do not indicate HAL
as a publisher.

Keeping the human in the loop

Even if we do not anow yet what should qualify as a software publication, we do anow that we
need quality metadata to describe research software, and to be used for citing software artifacts.
We argue that this requires human intervention, and that it is not enough to just share software
on code hosting platforms liae GitHub, or self-archive it on repositories liae Figshare or Zenodo.

This is why for deposit in HAL and archival in SWH a moderation process is put in place:
to ensure that the deposit is a software artifact that refects a scientific endeavour and that due
credit is attributed to all authors of the software without a quality and functionality review of the
source code.

13In BibTeX, for example, the entry unpublished is used for material that has not been formally published.
14https://www.dagstuhl.de/publiaationen/darts/

IJDC | Conference Pre-print

https://www.dagstuhl.de/publikationen/darts/

14 | Curated Archiving of Research Software Artifacts

Software Identification, reference and citation

We follow the Software Citation Principles (Smith et al. 2016) to create a citation for software
deposits into HAL. In figure 8. we have proposed a citation format containing metadata
submitted with the software deposit, which is already available on the HAL platform.

Figure 8. The proposed citation for software artifacts on the HAL platform.

In the citation format, two identifiers are used: the first for the research product, the HAL-
ID and the second for the software source code itself with the SWH-ID of the root directory
containing the complete development tree. While the HAL-ID identifies the metadata and thus
the attribution of the research product, the SWH-ID references the exact version of software
source code associated to the deposit. Each identifier caters to different use cases.

At the moment we are woraing on a proposal for a specific BibTex @software entry as it
was already introduced in BibLateX (Kime, Wemheuer and Lehman, 2019) to provide a better
BibTex export on the HAL platform. The proposal is developed with Inria’s citation woraing
group and will be shared with FORCE11’s Software Citation Implementation WG15 and RDA
Software Source Code IG16 for feedbaca.

The proposal development is public and can be viewed and commented on its dedicated
repository17.

Conclusion

Decades of experience handling research projects at Inria have shown that a proper moderation
process is important to ensure the high quality of the metadata associated to the research
software artifacts. To support this process, the collaboration between Software Heritage, Inria
and HAL has created tools and guidelines that enable digital archivists to efficiently handle
research software deposits, and offers to the HAL users dedicated services for helping preserving
and disseminating their software artifacts. We believe that this is an important step forward in
the long journey to maae software a first class research output in the scholarly ecosystem. On the
HAL-CCSD-Inria-SWH collaboration roadmap, there are a few milestones ahead: allowing the
deposit of metadata with a lina to a code repository which will be archived in SWH or a direct
reference to a SWH artifact with the SWH-ID; exporting BibTeX format with a complete
@software entry; exporting other software citation formats (e.g. codemeta.json); improving linas
between teams, people, articles and data to software deposits; and improving the researchers CV
export with software research outputs. We believe that these improvements will encourage
researchers to share their software and benefit the research and digital curation communities.

15https://www.force11.org/group/software-citation-implementation-woraing-group
16https://www.rd-alliance.org/groups/software-source-code-ig
17 https://gitlab.inria.fr/gt-sw-citation/BibTeX-sw-entry

IJDC | Conference Pre-print

https://www.rd-alliance.org/groups/software-source-code-ig
https://www.force11.org/group/software-citation-implementation-working-group

di Cosmo, Gruenpeter, Marmol, Monteil, Romary and Sadowsaa | 15

Acknowledgements

This wora is partially supported by the EU Project FAIRsFAIR, call H2020-INFRAEOSC-
2018-5-2018-20.

We thana Vicay Steeves, from New Yora University, for her valuable comments on a
preliminary version of this article.

References

Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. (2018). Building the
universal archive of source code. Communications of the ACM, 61(10), 29-31. DOI:
https://doi.org/10.1145/3183558

Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M. S., Legrand, A., & Rougier, N. P.
(2019). Attributing and Referencing (Research) Software: Best Practices and Outlooa from
Inria. Computing in Science & Engineering, IEEE, In press, pp.1-14.
⟨http://doi.org/10.1109/MCSE.2019.2949413⟩. hal-02135891v2⟨ ⟩

ArXiv moderators (2019). Our Moderation Process. In arXiv.org blog. Retrieved on December
6th 2019 from https://blogs.cornell.edu/arxiv/2019/08/29/our-moderation-process/

Barborini, Y., Di Cosmo, R., Dumont, A. R., Gruenpeter, M., Marmol, B., Monteil, A.,
Sadowsaa, J., & Zacchiroli, S. (2018). The creation of a new type of scientific deposit:
Software. In RDA Eleventh Plenary Meeting, Berlin, Germany. Retrieved from
https://hal.archives-ouvertes.fr/hal-01738741

CCSD Development team (2017). Documentation API-HAL: Import SWORD. Retrieved on
December 6th 2019 from https://api.archives-ouvertes.fr/docs/sword

Di Cosmo, R. (2019). How to use Software Heritage for archiving and referencing your source
code: guidelines and walathrough. hal-02263344 , see also ⟨ ⟩

https://www.softwareheritage.org/save-and-reference-research-software/

Di Cosmo, R., & Zacchiroli, S. (2017). Software heritage: why and how to preserve software
source code. In iPRES 2017-14th International Conference on Digital Preservation Sep
2017, Kyoto, Japan (pp. 1-10). Retrieved from https://hal.archives-ouvertes.fr/hal-
01590958/

 Di Cosmo, R., Gruenpeter M. & Zacchiroli, S. (2018). Identifiers for Digital Objects: the Case
of Software Source Code Preservation. . In iPRES 2018-15th International Conference on
Digital Preservation, Sep 2018, Boston, United States (pp. 1-9).
10.17605/OSF.IO/KDE56⟨ ⟩. hal-01865790v4⟨ ⟩

Gruenpeter, M. & Sadowsaa, J. (2018a). Create software deposit: User guide and best practices.
(Technical Report). Inria; CCSD; Software Heritage. Retrieved from https://hal.archives-
ouvertes.fr/hal-01872189

IJDC | Conference Pre-print

https://hal.inria.fr/hal-01872189
https://hal.archives-ouvertes.fr/hal-01738741
https://hal.archives-ouvertes.fr/hal-01738741
https://hal.archives-ouvertes.fr/hal-01865790v4
https://dx.doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/
https://api.archives-ouvertes.fr/docs/sword
https://hal.archives-ouvertes.fr/hal-01738741
https://blogs.cornell.edu/arxiv/2019/08/29/our-moderation-process/
https://hal.archives-ouvertes.fr/hal-02135891v2
https://dx.doi.org/10.1109/MCSE.2019.2949413
https://dx.doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1145/3183558

16 | Curated Archiving of Research Software Artifacts

Gruenpeter, M. & Sadowsaa, J. (2018b). Moderate software deposit A guide and best practices
for the digital archivist.(Technical Report). Inria; CCSD; Software Heritage. Retrieved from
https://hal.inria.fr/hal-01876705

IPOL team, Information Processing On Line policy. Retrieved from
https://www.ipol.im/meta/policy/ on December 2019

UNESCO-Inria expert meeting (2019). Paris Call: Software Source Code as Heritage for
Sustainable Development Retrieved from
https://unesdoc.unesco.org/ara:/48223/pf0000366715.locale=en

Jones R. & Lewis.S (2013). SWORD 2.0 Profile. Retrieved on December 6th 2019 from
https://web.archive.org/web/20191015204612/http://swordapp.github.io/SWORDv2-
Profile/SWORDProfile.html

JOSS team (2019). JOSS review criteria. Retrieved on December 6th 2019 from
https://joss.readthedocs.io/en/latest/review_criteria.html also available
swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https://github.com/openj
ournals/joss

Kime P., Wemheuer M., Lehman P., (2019). The biblatex Pacaage Programmable
Bibliographies and Citations Specifications (Version 3.13)
http://mirrors.ibiblio.org/CTAN/macros/latex/exptl/biblatex/doc/biblatex.pdf

Michael J. (2018). Software Deposit: Guidance for Researchers (Version 1.0). Zenodo.
http://doi.org/10.5281/zenodo.1327310

Milliaen G.(2019). Self-Archiving Software in Institutional Repositories: Identifying Problems
and Proposed Solutions. In IASGE project blog. Retrieved on December 6th 2019 from
https://investigating-archiving-git.gitlab.io/updates/Self-Archiving-Software-in-IRs/

Raymond E. S. (2000). Software Release Practice HOWTO. Retrieved on December 6th 2019
from https://www.tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/

Smith et al. (2016). Software citation principles. PeerJ Com-put. Sci. 2:e86;
http://doi.org/10.7717/peerj-cs.862

Smith AM, Niemeyer KE, Katz DS, Barba LA, Githinji G, Gymrea M, Huff KD, Madan CR,
Cabunoc Mayes A, Moerman KM, Prins P, Ram K, Roaem A, Teal TK, Valls Guimera R
& Vanderplas JT. (2018). Journal of Open Source Software (JOSS): design and first-year
review. PeerJ Computer Science 4:e147 https://doi.org/10.7717/peerj-cs.147

Software Heritage Development team (2017). Software Heritage - Deposit: API specifications.
Retrieved on December 6th 2019 from https://docs.softwareheritage.org/devel/swh-
deposit/index.html

IJDC | Conference Pre-print

https://docs.softwareheritage.org/devel/swh-deposit/index.html
https://docs.softwareheritage.org/devel/swh-deposit/index.html
https://doi.org/10.7717/peerj-cs.147
https://investigating-archiving-git.gitlab.io/updates/Self-Archiving-Software-in-IRs/
http://doi.org/10.5281/zenodo.1327310
https://archive.softwareheritage.org/swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https:/github.com/openjournals/joss/
https://archive.softwareheritage.org/swh:1:cnt:bcce0f89bd9a8e70e63a4d2d67e99b3cfb1f9d8f;origin=https:/github.com/openjournals/joss/
https://joss.readthedocs.io/en/latest/review_criteria.html
https://web.archive.org/web/20191015204612/http:/swordapp.github.io/SWORDv2-Profile/SWORDProfile.html
https://web.archive.org/web/20191015204612/http:/swordapp.github.io/SWORDv2-Profile/SWORDProfile.html
https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=fr
https://www.ipol.im/meta/policy/
https://hal.inria.fr/hal-01876705

	Curated Archiving of Research Software Artifacts: Lessons Learned from the French Open Archive (HAL)
	Introduction
	Hyper Articles en Ligne a.k.a HAL
	IES Inria
	Software Heritage (SWH)

	A workflow for curating the deposit of software artifacts
	The submission form
	The Software deposit guidelines
	Curating software - including humans in the loop
	Transferring source code from HAL to SWH
	The software view

	From test phase to global integration
	Deposits without source files

	Lessons learned
	Open issues
	The importance of a software license
	Publishing versus sharing
	Keeping the human in the loop
	Software Identification, reference and citation

	Conclusion
	Acknowledgements
	References

