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Abstract

In contrast  to books or published articles,  pure digital  output of research projects is 
more fragile and, thus, more diffcult to preserve and more diffcult to be made available 
and to be reused by a wider research community. Not only does a fast-growing format 
diversity in research data sets require additional software preservation but also today’s 
computer  assisted  research  disciplines  increasingly  devote  signifcant  resources  into 
creating new digital resources and software-based methods.

In order to adapt FAIR data principles, especially to ensure re-usability of a wide variety 
of  research  outputs,  novel  ways  for  preservation  of  software  and  additional  digital 
resources  are  required  as  well  as  their  integration  into  existing  research  data 
management strategies.

This  article addresses  preservation challenges and preservation options of  containers 
and virtual machines to encapsulate software-based research methods as portable and 
preservable software-based research resources, provides a preservation plan as well as
an implementation.
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Introduction

In contrast to books or published articles, pure digital output of research projects is more fragile 
and, thus, more diffcult to preserve as well as more diffcult to be made available and to be 
reused by a wider research community. Additionally, specialization of research disciplines leads 
to a fast-growing diversity of formats used in research data sets. For instance, a study of data sets 
in public repositories showed a wide variation of fle formats used in general, and in particular 
multiple different data formats were used within individual data sets (cf. Wehrle and Rechert, 
2019). Appropriate software – probably together with operational knowledge – will be required 
to ensure meaningful long-term access to these data sets. Furthermore, today’s computer assisted 
research does not only rely on existing software and digital resources, but increasingly devotes 
signifcant resources into creating new digital resources and tailored software-based methods, 
i.e., to process data or to create novel (software-based) models. In order to adapt FAIR data 
principles (Wilkinson et al., 2016) to software-based research methods (Lamprecht et al., 2019) 
and to ensure re-usability of a wide variety of digital research outputs, novel ways for 
preservation are to be developed and to be integrated in research data management strategies.

Operational knowledge, in particular of highly specialized software, vanishes and the 
technological environment changes quickly, such that a retrospective reconstruction of complex 
scientifc workfows will become increasingly diffcult (Macleod et al., 2014; Baker, 2014). 
Therefore, software-setups should be captured in a (re-)usable manner (Grüning et al., 2018). 
Since there exist already concepts and tools to capture and encapsulate software-based 
experiments and workfows (e.g., Munafò et al., 2017; Chard et al., 2019), preservation 
workfows should build on-top of these existing tools and practices.  To ensure long-term access, 
however, archived experiments need to be maintained in an effcient manner, since not only the 
original technical environment is changing, but also technical progress will change curation and 
access methodology over time. To tackle these challenges, a suitable generic representation of 
captured (self-contained) software-based experiments and workfows is required. Within the 
CiTAR project1 we have explored options to publish and preserve software-based research 
methodology as container or virtual machines while ensuring scalable long-term access and 
usability.

Preservation Challenges

Previous efforts of preserving research objects focused mostly on static, singular artifacts. 
Recently, concepts and practice of software citation have been developed2 as well as guidelines 
and infrastructure for the management of software dependencies.34 For productive re-use 
scenarios, software needs to be made available and accessible in a functional way, i.e., to be used 
with research data sets or within a complex scientifc workfow. With technical progress and 
especially the advance of virtualization, container, Cloud and related technologies, research 
environments became interconnected and interactive, most importantly, however, research data 
and software became more interdependent (e.g. Pimentel et al., 2019), such that access and re-
use will only be possible if all components are available, confgured and executable (Ivie and 
Thain, 2018).

Popular manifestations of this trend are virtual machines (VM) and containers (e.g., Docker 
or Singularity). These technologies have been adopted quickly by researchers (e.g., Boettiger, 
1 CiTAR - Citing and archiving research methods, a three-year Baden-Württemberg state project: 
http://citar.eaas.uni-freiburg.de/ 
2 cf. Software Citation Principles: https://www.force11.org/software-citation-principles 
3 Checklist for a Software Management Plan: https://zenodo.org/record/2159713 
4 Software Deposit Guidance: https://softwaresaved.github.io/software-deposit-guidance/ 
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2005) because they enable researchers to encapsulate complex software-based research 
environments – e.g., multiple software components, including application-specifc settings – into 
a single portable entity and ease reproduction of scientifc results (Meng et al., 2015). 
Furthermore, these technologies allow researchers to develop, prepare and test a complex 
software setup locally and deploy it with little additional effort in the Cloud or high-performance 
computing (HPC) facilities. This way, a pre-confgured software-based research environment 
can be shared and (re-)used independently of its original creation context (Howe, 2012). 
Commercial5 and community driven solutions6 7 built on-top of aforementioned technologies 
and provide tools as well as public portals to publish, share and reproduce experiments. 
However, these “public – in production” solutions rely – sometimes implicitly – on a complex, 
contemporary technical landscape (e.g., a specifc Docker version on a specifc Linux kernel 
version on the Intel/x86 architecture), publicly available software repositories (registries), such as 
Docker Hub, GitHub and similar, to assemble and re-run a published experiment. However, 
due to the implicit encapsulation and simplicity of publishing and sharing, VMs and containers 
therefore seems to be promising preservation targets for complex software setups. Still, 
preserving VMs and containers pose new technical and new conceptual challenges. 

Figure 1. Life-cycle of software-based research methods.

The CiTAR project aims to provide infrastructure and workfows for the “archive and 
reuse” stage (cf. Figure 1) of the research data management life-cycle (cf. Ball, 2012). Fig. 1 
depicts a simplifed life-cycle of software-based research methods with three main stages.  Our 
focus is on improving the archive workfow of “in use” software setups and maintaining future 
integration (re-use) possibilities. The CiTAR framework focuses on workfows and builds on-top 

5 For instance, Code Ocean: https://codeocean.com/ 
6 The Galaxy Project: https://usegalaxy.org/ 
7 Reprozip: https://www.reprozip.org/ 
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of existing technologies, such as (public) compute Clouds, (public) research data repositories and 
Emulation-as-a-Service8 (EaaS) to substitute hardware dependencies.

Defining a Preservation Target

The number of already created artifacts (VMs and containers) as well as their technical diversity 
is overwhelming. Even though, the resulting artifacts are built on common technical foundations 
– VMs are based on hardware virtualization technology (prominently Intel/x86), containers 
build on virtualization of operating system interfaces technology – different vendors and 
implementations created a variety of “favors”, all similar but slightly different. In order to 
ensure future reuse of these objects in an evolving technological landscape, appropriate technical 
runtime environments are necessary, e.g., emulation providing an abstract hardware equivalent 
for execution, possibly in combination with additional software.

While for any technical favor an individual solution eventually can be found (e.g., manual 
adaption, preservation of original software, etc.), the scale of this task makes such an approach 
not feasible for a generic data management strategy and following, a preservation plan. To 
develop and implement an effcient and scalable preservation plan for VMs and containers, in 
both cases a common structure, format and/or technical description is necessary to reduce the 
technical variety with a minimal and manageable set of technical dependencies to be monitored 
and eventually substituted.

Integration and Securing Access

A further preservation challenge is to provide access to preserved VM and containers. 
Traditional emulation workfows usually focus on providing interactive access to the user. This 
approach has been proven useful for multimedia objects like CD-ROMs or games (Espenschied 
et al., 2013), however, in the case of software-based research methods, interactive access might 
not be as useful, since these need to be integrated into a researcher’s environment or workfow, 
e.g., via a network connection to automate its operation, processing input date and produced 
output.

Making old software setups available via network can become a security risk. Maintaining 
security problems within of preserved software-setups is diffcult, if not impossible. After a 
research project ended, developers as well fnancial support is usually unavailable, especially if 
the created setups, e.g., specialized databases, tools or similar have small research communities. 
Furthermore, any modifcation, including security fxes, to the preserved software might change 
its behavior and make the reproduction of the original results impossible.

Artifact Generalization – 
Defining Com m on Object #tructures

With the goal to implement a framework for preserving containers and VMs, in a frst step a 
preservation plan for VMs and containers has to be developed and implemented.

Virtual Machines

Old software encapsulated as a VM expects technical interfaces to be present to run, e.g., an 
appropriate instruction set architecture (ISA) as well as the presence of several hardware 
components. Emulation allows to bridge the gap between old and contemporary hardware by 
utilizing software to “emulate” an old hardware environment on modern hardware and thus is 

8 Emulation-as-a-Service: https://eaas.uni-freiburg.de 
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able to ensure functionality of VMs in the long run. From today’s perspective, we can assume 
that there will be a future demand for emulators, e.g., to emulate today’s popular Intel/x86-
based hardware platform, therefore we assume the availability of appropriate emulation 
software for future computer systems. However, it is impossible to predict their actual technical 
characteristics: while all emulators of a given technical architecture support a common ISA (e.g. 
x86), they may differ signifcantly in their technical confguration, resulting in VMs that perform 
well on one emulator and are non-operational on others. Hence, it is necessary to prepare VMs 
conceptually and technically for the event of replacing obsolete emulators with a future 
generation of emulators.

To simulate these changes in emulated hardware, we conducted an experiment migrating 
VMs from one virtual hardware to another, to determine an effective procedure for this task. 
We chose today’s popular emulation and virtualization software VMware, VirtualBox and 
QEMU and installed several Windows and Linux operating system versions on all three 
platforms using default choices wherever possible, to create typical disk images. Then, we tried 
to run all of these images on the alternative two platforms. The frst observation was that 
differing hardware setups prevented even a basic system start-up (e.g. to safe boot /repair) failed 
for every possible combination (Windows VMs). In a further step, we have searched for relevant 
information in online resources for hints or hacks to get a rudimentary boot-setup, from which 
self-repair mechanisms of the operating system could be accessed. We have succeeded in only 
two out of six attempts (Windows XP). For a more scalable and predictable solution, we 
evaluated potential system and hardware settings to fnd the most generic confguration, 
compatible with any emulated or virtual hardware setup. While such a confguration won’t yield 
the most preformat setup (e.g., due to the selection of generic hardware drivers), this approach 
worked with every virtualization / emulation setup and operating system. Furthermore, we 
could implement automated procedures to be applied during VMs ingest for hardware driver 
adaption.

These experimental results highlight the diffculties of managing software environments 
manifested as VM disk images from different or unknown hardware confgurations, but more 
importantly they help managing future changes in emulator setups. Additionally, the knowledge 
created about required technical adaptations, and preserved as meta-data and tools, will reduce 
the complexity and cost of future adaptations, especially if all archived disk images are 
generalized to a small number of technical confgurations.

Containers

As a consequence of virtualizing operating system interfaces, containers are isolated from the 
host system and thus need to be self-contained, i.e., all software dependencies (libraries, 
applications, etc.) have to be included within the container. The main content of a container is 
just a self-contained flesystem with installed and confgured software components (except the 
operating system kernel, which is provided by the host system) (c.f. Figure 2). The remaining 
external or unresolved software dependencies are the container runtime and the underlying 
operating system kernel, i.e., the operating system kernel’s application binary interface (ABI).
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Figure 2. Container structure.

A container’s technical runtime is composed of two components: a hardware component 
(the computer) and a software component. In general, the software component represents 
typically a basic Linux installation with an installed and confgured container runtime (cf. Fig. 3 
left). As a frst preservation step, the hardware component is replaced by an emulated hardware 
equivalent which allows containers (together with the vendor specifc software dependencies) to 
be archived and such that the containers can unchanged over time (cf. Fig 3 centre).

Figure 3. Left: full contemporary software and hardware setup. Centre: hardware is replaced 
by a hardware equivalent (emulator), software stack remains unchanged. Right: 
Vendor specifc container format is generalized to a generic container representation.

Even though all containers are built on top of the same technical foundations, today’s 
popular container implementations such as Docker, Singularity, or Shifter use different internal 
representations and confguration formats. Thus, these representations require a (vendor) 
specifc technical runtime with the appropriate software version. With respect to long-term 
maintenance of such user-provided objects, these different runtimes need to be maintained over 
time. But also, the access framework requires adaptations specifc to the runtime used. These 
adaptations concern in particular reusing containers with user-provided data, providing 
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interactive access to the contained software process, for instance to tweak variables, as well as 
retrieving a process’s output for inspection or further processing. Hence, a small number of 
software runtimes being able to run a large number of preserved containers is required, as a 
common, generic container representation and confgurations reduces the complexity and 
simplifes developing access services. By leveraging the fact that all containers consist of a 
flesystem representation and confguration meta-data, we have implemented a common archive 
representation of containers together with a workfow to ingest and convert container “favors” 
into this common format. Through this workfow the vendor-specifc flesystem representation is 
migrated to an immutable image format, which is then managed and archived like any other 
disk image. Confguration meta-data is converted to the Open Container Initiative (OCI) 
standard runtime runC. The generic runtime, a quite minimal Linux system (about 60 MB) is 
built as a VM. Building a new container runtime VM is only necessary if the ABI of the 
underlying operating system kernel has changed, which for the Linux kernel is very rarely the 
case. Figure 3 (right) shows the fnal CiTAR container technology stack. Figure 4 shows an 
example of a CiTAR landing-page of a preserved container, which contains usage information 
and the option to execute the experiment and retrieve the result.

Figure 4. CiTAR landing page example.
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Access and Integration

An archived software environment requires versatile access options to be useful, in particular in 
the research domain. For instance, the user might want to interact with an archived Web server 
or re-run an archived data analysis software with new or modifed data.

As an example for perpetual access to software-based research resources, we have used the 
outcome of the SlaVaComp project (2013-2015), which created an electronic meta glossary of 
regional and diachronic varieties of Church Slavonic – a language that was used in the 
Orthodox Slavia between the 10th and 16th centuries. Until the creation of a digital database, 
researchers had to consult printed dictionaries, which meant that even simple lookups could take 
a tremendous amount of time. Fifteen printed Church Slavonic and Greek glossaries with 
various regions of origin were combined into an easy-to-use online web-based application. As 
the support for the underlying server operating system will expire in the near future, the 
SlaVaComp service’s future is uncertain. Even if the operating system is upgraded to the next 
long-term support version, there is no guarantee that any other software dependency e.g. the 
database remains compatible or has long-term security support, crucial for a public online 
service. Furthermore, it is highly unlikely that former employees could adapt the service to a 
modern software stack, mainly because they have left after the project ended and with them 
most of the specifc knowledge about the software they created. This fate is shared by numerous 
software developments that emerge from scientifc projects. The costs for maintaining a server 
and the software after the end of a project are usually not covered, especially if these projects are 
only of interest for a small and specialized research community. Leaving an unmaintained, 
outdated machine connected to the internet poses a latent and increasing security risk.

The main challenges for accessing out of production software setups are security, simplicity 
of access and workfow integration. These environments have been archived to remain in its 
original state, with all the potential security threats. Worldwide network-based access (i.e., public 
Internet access) would promote re-use and would simplify integration into current tools and 
workfows, but would pose unmanageable security threats. In order to provide (secure) network 
access, all archived machines are deployed (on-demand) in their own private network and we 
provide several options (port-forwarding / NAT, SOCKS and local gateway) to access 
preserved software. Non-interactive containers or VMs can be accessed via a landing page and 
can be connected to a data-source or data-provider for input data.

Emulating Networks

We identifed that Ethernet can serve as a universal common denominator for network types. 
While higher-level network protocols like IP are not necessarily implemented on all archived 
systems, for layer-2 protocols Ethernet is predominant; other layer-2 protocols like Token Ring 
were neither widely deployed in archived systems nor are they in use in contemporary systems. 
Ethernet, thus, can serve as a basis for network access. Therefore, we spawn a virtual Ethernet 
network for every emulated environment, consisting of a software-based Ethernet switch with an 
arbitrary number connected to the single nodes of the environment. To exchange network 
traffc between nodes in this this virtual network, Ethernet frames are encapsulated in 
WebSocket over TLS connections and transported over the public Internet. This allows for a 
strict separation of virtual network traffc from traffc on the host environment. This approach 
eliminates any danger from archived environments attacking the host system or using the host 
system’s network resources to attack third-party entities on the Internet (or the host system’s 
private network environment). It also shields the archived (and unmaintained) environments 
from the attacks from the public Internet. At the same time, this approach also helps with 
reproducibility of the archived software’s output. Archived software might interact with other 
network components or download resources from the Internet, which has to be contained and 
controlled to guarantee reproducibility at a later date. Otherwise, external resources might 
either respond differently at a later date or not be available any more at all.
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Within the virtual Ethernet network, we have implemented different auxiliary services, 
which provided infrastructural services normally present in a network and can be seen as 
building blocks for an emulated network environment. They can be confgured and added to the 
environment by a curator via the user interface. One such service is a DHCP and DNS server, 
which can be turned on by the user to provide IP addresses to emulated environments. 
Additionally, the user can assign domain names to single environment under which the 
environment will be reachable in the emulated network environment. While, technically, this 
functionality is provided by the described DNS server, the assignment of domain names to 
environments happens and is saved in a more descriptive manner not coupled to the specifc 
implementation of the domain name resolution mechanism. This allows to change the 
implementation or reuse this metadata in other contexts. For instance, one might imagine a 
search over network metadata which can provide an archived/emulated version of a specifc 
domain.

A second building block is the possibility to allow emulated environments to access the (live) 
public Internet. This functionality is implemented by a software component which can act as a 
gateway in the virtual network and forward any (TCP/UDP) connections to a physical network 
on the host system. Traffc between the environments and the gateway is still encapsulated in the 
described way in a WebSocket connect over TLS. This makes it possible to place the gateway 
on a special machine separated from the rest of the rest of the machines (it might even be placed 
on an externally rented server reachable via the Internet), decreasing the potential security 
impact on the host’s network. Figure 5 depicts the CiTAR virtual network schema. 

Figure 5. CiTAR emulated network components.
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A third and fnal building block provides the ability to forward traffc from external sources 
like the public Internet to the emulated network environment. To convert TCP connections to 
Ethernet frames transported in the virtual network, this block, technically, has to act as a 
TCP/IP stack. Different access scenarios can be offered using this approach. Firstly, the user 
can download a local application (eaas-proxy, currently available for Windows, macOS, and 
GNU/Linux) and allow their Web browser to start it in the context of an emulation session. The 
local eaas-proxy will open a local server socket and forward any connection (again via an 
encrypted WebSocket connection over HTTPS) to the emulated network environment. The 
target emulation environment and port inside the virtual network can be confgured by the 
curator during ingestion. Alternatively, eaas-proxy can be confgured to act as a SOCKS5 proxy 
server.

Finally, eaas-proxy can be run on a temporary server and expose a port of an emulated 
environment or a SOCKS5 proxy server directly to the user. While, in this case, the user will 
not have to install any local software on their computer (an individual public IP/port will be 
shown for each emulation session instead), the connection will be unencrypted. It also might not 
work in (enterprise) networks which block external connections to non-standard ports, while a 
local eaas-proxy only has to be able to open a WebSocket connection to a HTTPS server on its 
default port.

As a last option, as eaas-proxy was implemented in JavaScript, it can be run directly in the 
user’s Web browser. This is especially helpful if the archived environment consists of one or 
several Web servers and was implemented as a prototype. Using W3C’s Service Workers 
specifcation, any HTTP requests of the browser to the archived Web server can here be 
intercepted, serialized to Ethernet frames on the client and sent via a WebSocket connection 
directly to the emulated network environment. As the archived Web server is never exposed 
directly to the Internet in this case, this helps to decrease risks with both attacks from the 
Internet on the (unmaintained) Web server as well as attacks from the (potentially malicious) 
archived Web server to the user’s Web browser. 

Example

Figure 6 shows the output of SlaVaComp as a virtual machine and a Docker container 
containing the Chromium browser were imported to CiTAR. They can now be run together in 
the same virtual network environment. The user can then access the archived SlaVaComp Web 
server via the Chromium browser. This does not directly expose the emulated environments to 
the public Internet and allows continued access to SlaVaComp using the archived Web browser 
even if future Web browsers were to drop features used by the archived Web application (e.g., 
Adobe Flash).
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Figure 6. Accessing a preserved database with its original web-based frontend.

In Figure 7 the same emulation session, eaas-proxy was run on the user’s local computer to 
connect their computer to the virtual network. A Perl script developed in the SlaVaComp 
project can then access the archived SlaVaComp environment from the local user’s computer in 
a secure way.

Figure 7. Perl script running batch job connecting to the preserved database.
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Conclusion

With CiTAR we have explored options to publish and preserve software-based research 
methodology as well as ensuring long-term access. Since both, operational knowledge vanishes 
and the technological environment changes quickly, a retrospective reconstruction of complex 
scientifc workfows will become increasingly diffcult. Preserving pre-confgured and executable 
software-setups will simplify reproducing, re-using and validating software-based scientifc 
workfows. Since there exist already concepts and tools to capture and encapsulate software-
based experiments and workfows, CiTAR builds its preservation workfow on-top of these 
existing tools and practices as well as on top of existing compute, storage and preservation 
infrastructure. To reduce maintenance of a diverse and technically complex technology and fast-
growing number of user-provided objects, we propose a generalization process for VMs and 
containers, such that a small number of hardware-independent and portable software-runtimes 
are able to render a large number of archived objects. Finally, we addressed challenges of 
accessing preserved scientifc software setups, by providing secure networked access to preserved 
software services, both for user-machine and machine-machine interaction.
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