
doi:10.2218/ijdc.v8i1.248 Distributed Digital Preservation 107

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

Distributed Digital Preservation in the Cloud

David S.H. Rosenthal and Daniel L. Vargas,

LOCKSS Program,

Stanford University Libraries

Abstract

The LOCKSS system is a leading technology in the field of Distributed Digital Preservation.
Libraries run LOCKSS boxes to collect and preserve content published on the Web in PC servers
with local disk storage. They form nodes in a network that continually audits their content and
repairs any damage. Libraries wondered whether they could use cloud storage for their LOCKSS
boxes instead of local disks. We review the possible configurations, evaluate their technical
feasibility, assess their economic feasibility, report on an experiment in which we ran a production
LOCKSS box in Amazon’s cloud service, and describe some simulations of future costs of cloud and
local storage. We conclude that current cloud storage services are not cost-competitive with local
hardware for long term storage, including for LOCKSS boxes.

International Journal of Digital Curation (2013), 8(1), 107–119. http://dx.doi.org/10.2218/ijdc.v8i1.248

The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation
Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

108 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

Introduction

The LOCKSS1 Program at the Stanford University Libraries pioneered the concepts of
Distributed Digital Preservation about 14 years ago by building a peer-to-peer
network of LOCKSS boxes in which libraries could collect and preserve content
published on the Web. About 150 libraries currently run LOCKSS boxes, preserving
e-journals and e-books in the Global LOCKSS Network (GLN), and databases,
government documents, special collections and other content in Private LOCKSS
Networks (PLNs). These boxes are typically modest PC servers with substantial
amounts of local disk storage.

Some of these libraries asked whether they could use “affordable cloud storage” for
their LOCKSS boxes. In this paper, we first describe the relevant features of typical
cloud services, then discuss the various possible technical architectures by which a
LOCKSS box could use such a service, ruling some out for performance reasons.
Applying the typical cloud service’s charging model to the remaining architectures
rules out others for economic reasons. We then describe an experiment in which we
implemented the most cost-effective architecture and ran a production LOCKSS box
to preserve GLN content in Amazon’s cloud service for several months. We report on
the pricing history of cloud storage, using it and the costs from the experiment to
compare the projected future costs of storing content preserved by LOCKSS boxes in
cloud and local storage. We conclude with discussion of future work, some of which
is already under way.

Features of Cloud Technology

Amazon, as a typical cloud service, provides the following components relevant here:

• A compute service, in which a customer can run a number of virtual machine
instances. These instances have the normal resources of a physical PC, but
their (virtual) disk storage is limited in size and is “evanescent” - vanishing
without trace when the instance stops for any reason.2 Amazon calls this
service Elastic Cloud Computing (EC2).

• An object storage service, in which a customer can store arbitrary-sized byte
strings. These objects persist, are named by URLs, and are accessed via an
API using HTTP PUT, GET and HEAD requests. Depending on the service,
the object store may be more or less reliable. Amazon calls this service
Simple Storage Service (S3), and offers two levels of reliability. The
standard level is designed for 11 nines durability, and Reduced Reliability
Storage (S3-RRS) is designed for 4 nines durability.

• A block storage service, in which a customer can store a file system that can
be mounted by virtual machine instances running in the compute service.
These file systems persist across virtual machine restarts, but are designed for
performance rather than extreme reliability. Facilities are normally provided
by which snapshots of the file systems can be reliably preserved as objects in

1 Lots Of Copies Keep Stuff Safe, a trademark of Stanford University.
2 This is true for instances backed by their Simple Storage Service (S3), not by their Elastic Block
Storage (EBS). But EBS is not reliable enough; see Experimental Results below.

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 109

the object storage service. Amazon calls this service Elastic Block Storage
(EBS).

Technical Aspects

It is important to understand the interfaces between these components. Their
performance characteristics determine the technical viability of the various system
architectures possible for LOCKSS boxes in the cloud:

• The interface between the outside world and the compute service, which is
typically as slow as the corresponding interface for a local computer;

• The interface between the outside world and the storage service, which is
typically as slow as the corresponding interface for a local computer;

• The interface between the compute service and the object storage service,
which is typically much slower than the interface between a local computer
and its disk, or a local storage area network;

• The interface between the compute service and the block storage service,
which is typically about the same speed as the interface between a local
computer and its disk;

• The interface between the block storage service and the object storage
service, whose performance is typically not critical.

Economic Aspects

The charging models for the various services determine the economic viability of the
various architectures possible for LOCKSS boxes in the cloud:

• The compute service typically levies charges based on the size of the virtual
machine and the time for which it is running;

• The object storage service typically levies charges based on the total size of
the objects stored, the time for which they are stored, the GET, PUT and
other HTTP operations invoked on them, and the durability level at which
they are stored;

• The block storage service typically levies charges based on the total amount
of storage consumed by the file systems, the time for which it is stored, and
the number of I/O transactions between it and the compute service;

• The service typically also levies charges based on the amounts of data
transferred in each direction across the interface between the compute and
storage services and the outside world.

Technical Architectures

A LOCKSS box consists of some storage holding the preserved content in a
repository, and a daemon – software running in a computer that accesses the
repository to perform the technical preservation functions described in the OAIS

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

110 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

Reference Model (ISO, 2003) including ingest, dissemination. integrity checking and
management as part of a peer-to-peer network (Maniatis, Roussopoulos, Giuli,
Rosenthal & Baker, 2005).

The following architectures are feasible using current compute and storage service
capabilities:

• A LOCKSS daemon running in a local machine with storage in an object
storage service. We have modified the LOCKSS daemon’s repository to use
the S3 object storage interface and run experiments against S3, and also
against Eucalyptus and the Internet Archive’s object storage service, both of
which are mostly compatible with S3. Extracting the content from S3 via its
Web interface for integrity checking is too slow to be viable; the LOCKSS
protocol requires fairly homogeneous I/O performance among the peers.

• A LOCKSS daemon running in a compute service virtual machine
instance with storage in the object storage service. Even from the compute
service the I/O performance of the object storage service is much slower than
a local disk, violating the homogeneous I/O performance requirement.

• A LOCKSS daemon running in a compute service virtual machine
instance with storage in the virtual machine’s disk. We implemented this
architecture in EC2 with an S3-backed virtual machine. It is disqualified for
two reasons: firstly, if the instance stopped for any reason the preserved
content would be entirely lost; secondly, the total space available is too small
for practical use.

• A LOCKSS daemon running in a compute service virtual machine
instance with storage in the block storage service. We implemented this
architecture in EC2 with EBS storage, but concerns about the unknown
reliability of EC2/EBS and the cost of recovering from a total loss of EBS
data over the network from other LOCKSS boxes led us to prefer the next
architecture.

• A LOCKSS daemon running in a compute service virtual machine
instance with storage in the block storage service and a snapshot
preserved in the object storage service at regular intervals. We
implemented this architecture in Amazon’s EC2 with EBS storage and
snapshots in S3, and ran it for several months. The results are described in
the Experimental Results section below.

We have examined some other architectures that require enhanced capabilities
from the object storage service. They are discussed briefly in the Future Technology
section below.

Economic Considerations

We chose Amazon for our experiment because Amazon has dominated the market for
cloud services, with an estimated market share above 90%, and remains the price
leader in storage (see Table 4). Applying the Amazon charging model to our preferred
architecture, the following costs could be incurred:

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 111

• EC2 charges for the virtual machine running the box;

• EBS charges for storing the content;

• EBS charges for I/Os to and from the content;

• EBS charges for storing the backup snapshot;

• Charges for inbound network usage for collecting the content – in Amazon’s
case, inbound network usage is free;

• Charges for outbound network usage for disseminating the content;

• Charges for bidirectional network usage for the LCAP voting protocol – in
Amazon’s case, inbound network usage is free;

• Charges for outbound network usage for repairing content at other boxes;

• Charges for inbound network usage for repairing content at this box from
other boxes – in Amazon’s case, inbound network usage is free.

Experimental Results

We implemented an Amazon Machine Instance (AMI) containing our recommended
configuration for a LOCKSS box. It is backed by S3 and configured by a bootbucket,
which specifies these system parameters: AWS Access Key, AWS Secret Access Key,
S3 bucket backing the image, name of .tar.gz archive in the S3 bucket containing the
LOCKSS configuration, and a comma delineated list of volume ids to automatically
attach and mount from EBS on startup.

The file systems it mounts from EBS contain the preserved content. Because EBS
is not reliable over the long term, a snapshot of each entire EBS file system is
preserved in S3. This snapshot is updated at regular intervals. Note that only content
changed since the previous snapshot is transferred in this process.

We configured a LOCKSS box using this AMI to preserve a sample of open access
content from the LOCKSS GLN so that it participated fully in the GLN, although with
less content (82GB) than the median GLN LOCKSS box (1.58TB). Snapshots of the
EBS file system containing this content were preserved in S3 at 12-hourly intervals.
Once a snapshot had been successfully stored, older snapshots were deleted leaving
two snapshots at the most.

We ran this box using a separate Amazon account created for the experiment and
monitored the costs incurred by the account every week for 14 weeks. The results are
shown in Table 1.

The experimental LOCKSS box was empty at the start, and was ingesting content
during the experiment. During week 12 it finished ingesting, as reflected in the
decrease in bandwidth charges, primarily for writing the new data to EBS and the
snapshots to S3.

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

112 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

Week Compute $ Storage $ Bandwidth $ Total $

2 53.76 2.43 0.16 56.36

3 53.76 2.65 0.16 56.57

4 53.76 2.83 0.18 56.77

5 53.76 2.98 0.19 56.93

6 53.76 3.13 0.22 57.10

7 53.76 3.14 0.28 57.18

8 53.76 2.94 0.24 56.94

9 53.76 3.58 0.25 57.59

10 53.76 3.71 0.44 57.92

11 53.76 3.86 0.39 58.02

12 53.76 3.24 0.45 57.45

13 53.76 3.99 0.33 58.08

14 53.76 4.00 0.40 58.16

Table 1. Costs incurred by experimental LOCKSS box in AWS. We eliminated Week
1 because there were some startup effects.

This experimental box was not representative in several ways:

• It preserved less content than the median LOCKSS box in the GLN and thus
consumed less storage and less bandwidth than a production box.

• Out of caution the experimental box maintained two snapshots of its EBS
volumes in S3; only one is necessary.

• As we were only running the experimental box for a short period, we used an
on-demand instance so our compute charges were higher than they should
have been. A production box would use a reserved instance, which requires
an up-front payment and a commitment for either one or three years. Since
LOCKSS boxes are continually active, this would need to be a
heavy-utilization reserved instance with a three-year commitment. The May
2012 cost for a suitable instance would be $1200 plus $0.052/hr (Amazon,
2012).

• There is the question of over-provisioning storage to cope with growth. As its
collection grows, the disks of a physical LOCKSS box will fill up.
Eventually, additional disks must be provided, and at that time it makes sense
to buy the biggest disks available. Thus physical LOCKSS boxes add storage
in large discrete increments, and are typically over-provisioned by at least
half the size of their most recent disk addition. In fact, the median LOCKSS
box is currently over-provisioned by about 2TB. In the cloud, storage can be
added in smaller units more frequently, so the amount of over-provisioning
can be less. We are not able to quantify this effect exactly.

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 113

We adjusted the results from Table 1 to model a production LOCKSS box having
already ingested its content and using a reserved instance. To illustrate the range of
costs implied by different amounts of over-provisioning, we modelled both minimal
over-provisioning (Table 2) and over-provisioning matching that of the median
LOCKSS box (Table 3).

Week Compute $ Storage $ Bandwidth $ Total $

2 8.74 37.63 3.18 49.54

3 8.74 39.75 3.10 51.59

4 8.74 41.47 3.52 53.72

5 8.74 42.91 3.60 55.25

6 8.74 44.35 4.17 57.25

7 8.74 44.46 5.31 58.51

8 8.74 42.54 4.63 55.90

9 8.74 48.66 4.91 62.31

10 8.74 49.99 8.53 67.26

11 8.74 51.44 7.61 67.78

12 8.74 45.38 8.75 62.87

13 8.74 52.64 6.35 67.72

14 8.74 52.72 7.81 69.26

Table 2. Costs that would have been incurred by median LOCKSS box in AWS with
minimal over-provisioning.

Week Compute $ Storage $ Bandwidth $ Total $

2 8.74 85.14 3.18 97.05

3 8.74 87.26 3.10 99.10

4 8.74 88.98 3.52 101.23

5 8.74 90.42 3.60 102.75

6 8.74 91.86 4.17 104.76

7 8.74 91.97 5.31 106.01

8 8.74 90.05 4.63 103.41

9 8.74 96.17 4.91 109.82

10 8.74 97.50 8.53 114.77

11 8.74 98.95 7.61 115.29

12 8.74 92.89 8.75 110.37

13 8.74 100.14 6.35 115.23

14 8.74 100.23 7.81 116.77

Table 3. Costs that would have been incurred by median LOCKSS box in AWS with
matching over-provisioning.

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

114 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

The projected total three-year cost in the minimal over-provisioning case would be
approximately $8,800, and in the matching over-provisioning case approximately
$18,100. We would expect actual costs between these two, and probably closer to the
minimum. Current purchase cost for the matching over-provisioning case is about
$1,500. Thus non-hardware costs for the local case would have to be over 5/6
(minimal) or 11/12 (matching) of the three-year Total Cost of Ownership (TCO) for
cloud to be cheaper.

Projecting the Cost of Cloud Storage

Table 4 shows the history of the prices charged by several major storage services. It
shows that most have dropped less than 10% per year. This is in stark contrast with
the 30-year history of raw disk prices, which have dropped at least 30% per year, as
predicted by Kryder’s Law (Walter, 2005).

Service Launch

Date

Launch
Price

$/GB/mo

December
2012 Price

$/GB/mo

Price Drop

Per Year

Amazon S3 03/06 0.15 0.095 7%

Rackspace 05/08 0.15 0.100 9%

Azure 11/09 0.15 0.125 3%

Google 10/11 0.13 0.095 27%

Table 4. Price history of the base tier of some leading cloud storage services.

This comparison is somewhat unfair to Amazon S3. Amazon has used the decrease
in storage costs to implement a tiered pricing model; over time larger and larger tiers
with lower prices have been introduced. The price of the largest tier, now 5PB, has
dropped about 10% per year; prices of each tier, once introduced, have been stable or
dropped slowly. Google’s rapid price drop is the anomalous result of its recent
introduction and a late November 2012 price war.

Nevertheless, it is clear that the benefits of the decrease in raw storage prices are
not going to cloud storage customers. Backblaze provides unlimited backup for
personal computers for a fixed price, currently $5/mo. Before the floods in Thailand,
they documented the build cost of their custom 4U 135TB storage pods at under $8K
(Nufire, 2011); using current retail prices for 3TB drives would make this $7.1K.
Dividing the hardware into 3 RAID6 arrays gives 117TB of usable capacity. Given
S3’s dominance of the cloud storage market, and thus purchasing volumes, it is very
unlikely that their costs are higher than those of Backblaze. Despite this, 117TB in
S3-RRS costs more than $6.9K/mo. In the first month, an S3-RRS customer would
pay almost as much as it would cost to buy the necessary hardware.

Work is under way to build economic models of long term data storage. Based on
an initial model, and using interest rates from the last 20 years, Figure 1 compares the
endowment in current dollars to fund storing 117TB for 100 years at varying rates of

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 115

annual price drop for S3 and 3 RAID6 copies in Backblaze’s storage pods. Both
alternatives provide three geographically separate replicas in storage protected against
more than one simultaneous disk failure.

Figure 1. Projected 117TB 100 year endowment.

Shown in red, the cost of using Amazon’s S3 starting at its current prices.

Shown in green, the cost of maintaining three copies in local storage using
Backblaze’s costs for the hardware and assuming (a) that the non-media costs are
two-thirds of the total (Moore, D’Aoust, McDonald & Miller, 2007) and (b) that
drives are replaced every three years. Note that Backblaze reports much lower
non-media costs. Note also that non-media storage costs are typically per-drive or
per-server, so they scale with the drive capacity.

It is evident that, in the long term, the rate of price drop dominates all other
parameters. Note that Amazon S3 is not competitive with local storage at any Kryder
rate. Unless the rate at which storage service price drops comes into line with that of
raw media costs, these services cannot compete with local provision for long term
storage; the endowment needed at the historic 7% rate for S3 is more than seven times
that needed at the disk industry’s roadmap projection of 20% rate for local storage.

Future Work

This investigation led to further work in both economics and technology.

Economics

Comparing the economics of local storage (which has both purchase and running
costs) with cloud storage (which has only running costs) involves comparing
expenditures through time. The standard technique for doing so is Discounted Cash
Flow (DCF), which allows a series of incomes or expenditures through time to be
reduced to a Net Present Value, subject to an assumed constant interest rate.

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

116 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

Recent research has thrown serious doubt upon both the practical usefulness and
theoretical basis of DCF. Its practical usefulness is suspect because it involves
choosing a discount rate – an interest rate that will apply for the duration. In practice,
people applying DCF choose unrealistically high interest rates, making investment in
long term projects excessively difficult (Haldane & Davies, 2011). Its theoretical basis
is suspect because the single constant interest rate averages out the effect of periods of
very high or (as now) very low interest rates. This would be correct if the outcome
was linearly related to the interest rate, but it is not (Doyne, Farmer & Geanakoplos,
2009).

It became apparent that realistic projections of the costs of future storage
technologies required more sophisticated techniques than DCF. An effort to build
Monte Carlo models of storage costs is now under way, with participants from the
LOCKSS Program, University of California Santa Cruz, Stony Brook University and
Network Appliance. The early stages of this work involved two prototype economic
models, one short term and one long term (Rosenthal, Rosenthal, Miller, Adams,
Storer & Zadok, 2012); the long term model was used to produce Figure 1.

Technology

A study of access patterns to data in digital archives (Adams, Miller & Storer, 2011)
showed that the majority of read operations were for integrity checking. This is also
true of LOCKSS boxes. Checking the integrity of content in current cloud storage
systems is problematic. Although it is possible to use the HTTP HEAD operation to
ask the service for the checksum of an object, this is not useful as an integrity check
(Rosenthal, 2010). Although one might hope that the service would re-compute the
hash for each HEAD request, it need not do so. The service could respond with a
correct hash to this request by remembering the hash it computed when the object was
created, without ever storing the object.

Thus, an integrity check has no option but to retrieve the entire object from the
object storage service and compute its hash anew. This is slow and, if the system is
running outside the compute service, expensive.

A simple enhancement to the object storage API would solve this problem. A client
could supply a nonce with the HEAD request, which the object storage service would
prepend to the object before hashing it (Rosenthal, 2010). In this way any of a range
of integrity check technologies (Maniatis, Roussopoulos, Giuli, Rosenthal & Baker,
2005; Shah, Baker, Mogul & Swaminathan, 2007; Song & Jaja, 2009) could force the
object storage service to prove that it currently contains a good copy of the object,
without the need to retrieve it.

Our experiments suggest that, with some relatively simple additions to the
LOCKSS daemon, this enhancement would make the following architecture
economically feasible: A LOCKSS daemon running in a local machine with storage in
an object storage service.

This would have two potential advantages. First, it would eliminate the need to pay
to store the data twice (i.e. once in EBS for performance and once in S3 for
reliability), as we did in our experiment. Second, it would eliminate the need for

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 117

over-provisioning storage to amortize the cost of adding storage over a reasonable
amount of increased data.

Based on the costs incurred during our experiment after adjustment, Table 5 shows
an estimate of the cloud service costs that would have been incurred by this
configuration of a median LOCKSS box. This should be compared with Table 3.

Week Compute $ Storage $ Bandwidth $ Total $

2 8.74 47.01 0.71 49.54

3 8.74 47.82 0.73 54.36

4 8.74 48.63 0.94 56.46

5 8.74 49.45 1.00 57.29

6 8.74 50.26 1.18 59.18

7 8.74 51.07 1.52 61.33

8 8.74 51.88 1.32 61.94

9 8.74 52.70 1.53 62.96

10 8.74 53.51 3.19 65.44

11 8.74 54.32 2.92 65.98

12 8.74 55.13 3.57 67.44

13 8.74 55.94 2.71 67.39

14 8.74 56.76 3.31 68.80

Table 5. Costs that would have been incurred by median LOCKSS box with storage in
S3 using suggested API. These numbers assume that the box started in Week 1 with
the 1.58TB content of the median box, and ingested at the same rate, governed by
per-publisher crawl rate limits, as our experimental box.

Whether this architecture would deliver adequate performance would depend on
the performance of the underlying service in computing the object’s hashes. What is
striking, however, is that using S3 directly is not significantly cheaper than using EBS
backed by S3 with minimal over-provisioning. The compression and de-duplication
capabilities of the mechanism for preserving snapshots of EBS volumes in S3 are
remarkably effective at reducing the cost of doing so. Thus, given the performance
questions surrounding using S3 directly, and the need for an API enhancement to
address them, there is no compelling reason to pursue this architecture. Instead, the
next step would rather be to ease the task of adding storage to the EBS volumes, so
that this would be done frequently and thus the costs of over-provisioning minimized.

Conclusion

The 30-year history of raw disk costs shows a drop of at least 30% per year. The
history of cloud storage costs from commercial providers shows that they drop, at
most, by 3% per year. Until there is a radical change in one or other of these cost
curves it clear that cloud storage is not even close to cost-competitive with local disk

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

118 Distributed Digital Preservation doi:10.2218/ijdc.v8i1.248

storage for long term preservation purposes in general, and LOCKSS boxes in
particular.

This makes the possible technical architectures by which LOCKSS boxes could use
cloud storage irrelevant. Nevertheless, we have implemented and tested the most
cost-effective architecture for a LOCKSS box in the current Amazon environment,
and have made this implementation available for use by anyone who disagrees with
our conclusions.

We repeat our earlier (Rosenthal, 2010) proposal for a simple extension to the
current Amazon S3 API that would greatly improve the suitability of S3 and similar
services, such as private cloud implementations, for digital preservation.

Acknowledgements

This work was performed under contract GA10C0061 from the Library of Congress’
NDIIPP program. Special thanks are due to Leslie Johnston and Jane Mandelbaum of
the Library of Congress; to Tom Lipkis and Thib Guicherd-Callin of the LOCKSS
Program; and to Ethan Miller, Ian Adams and Daniel Rosenthal of University of
California, Santa Cruz.

References

Adams, I.F., Miller, E.L. & Storer, M.W. (2011). Analysis of workload behavior in
scientific and historical long- term data repositories. Technical Report
UCSC-SSRC-11-01, University of California, Santa Cruz. Retrieved from
http://www.ssrc.ucsc.edu/Papers/ssrctr-11-01.pdf

Amazon. (2012). Amazon EC2 reserved instances. Retrieved from
http://aws.amazon.com/ec2/reserved-instances/#3

Doyne, J., Farmer, J.D. & Geanakoplos, J. (2009). Hyperbolic discounting is rational:
Valuing the far future with uncertain discount rates. Technical Report 1719,
Cowles Foundation, Yale University. Retrieved from
http://cowles.econ.yale.edu/P/cd/d17a/d1719.pdf

Haldane, A.G. & Davies, R. (2011). The short long. New Paradigms in Money and
Finance? Retrieved from
http://www.bankofengland.co.uk/publications/speeches/2011/speech495.pdf

ISO. (2003). Reference model for an open archival in formation system: ISO
14721:2003. Retrieved from http://www.iso.org/iso/catalogue_detail.htm?
csnumber=24683

Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal, D.S.H. & Baker, M.G. (2005).
The LOCKSS peer-to-peer digital preservation system. ACM Transactions on
Computer Systems, 23(1), 2–50. doi:10.1145/1047915.1047917

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

http://dx.doi.org/10.1145/1047915.1047917
http://www.iso.org/iso/catalogue_detail.htm?csnumber=24683
http://www.iso.org/iso/catalogue_detail.htm?csnumber=24683
http://www.bankofengland.co.uk/publications/speeches/2011/speech495.pdf
http://cowles.econ.yale.edu/P/cd/d17a/d1719.pdf
http://aws.amazon.com/ec2/reserved-instances/#3
http://www.ssrc.ucsc.edu/Papers/ssrctr-11-01.pdf

doi:10.2218/ijdc.v8i1.248 David Rosenthal and Daniel Vargas 119

Moore, R.L, D’Aoust, J., Robert, H., McDonald, R.H. & Minor, D. (2007). Disk and
tape storage cost models. Archiving 2007.
http://www.imaging.org/IST/store/epub.cfm?abstrid=34413

Nufire, T. (2011). Petabytes on a budget v2.0: Revealing more secrets. Retrieved from
http://blog.backblaze.com/2011/07/20/petabytes-on-a-budget-v2-0revealing-more
-secrets

Rosenthal, D.S.H., Rosenthal, D.C., Miller, E.L., Adams, I.F., Storer, M.W. & Zadok,
E. (2012). The economics of long-term digital storage. Paper presented at The
Memory of the World in the Digital Age Conference, Vancouver, BC. Retrieved
from
http://www.lockss.org/locksswp/wp-content/uploads/2012/09/unesco2012.pdf

Rosenthal, D.S.H. (2010). LOCKSS: Lots Of Copies Keep Stuff Safe. Paper presented
at NIST Digital Preservation Interoperability Framework Workshop. Retrieved
from http://lockss.org/locksswiki/files/NIST2010.pdf

Shah, M.A., Baker, M.G., Mogul, J.C. & Swaminathan, R. (2007). Auditing to keep
online storage services honest. HOTOS XI: 11th Workshop on Hot Topics in
Operating Systems. Retrieved from
http://www.usenix.org/events/hotos07/tech/full_papers/shah/shah_html/

Song, S. & Jaja, J. (2009). Techniques to audit and certify the long-term integrity of
digital archives. International Journal on Digital Libraries, 10(2-3).
doi.10.1007/s00799- 009-0056-2

Walter, C. (2005). Kryder’s Law. Scientific American, 293.
http://www.scientificamerican.com/article.cfm?id=kryders-law

The International Journal of Digital Curation
Volume 8, Issue 1 | 2013

http://www.scientificamerican.com/article.cfm?id=kryders-law
http://dx.doi.org/10.1145/1047915.1047917
http://www.usenix.org/events/hotos07/tech/full_papers/shah/shah_html/
http://lockss.org/locksswiki/files/NIST2010.pdf
http://www.lockss.org/locksswp/wp-content/uploads/2012/09/unesco2012.pdf
http://blog.backblaze.com/2011/07/20/petabytes-on-a-budget-v2-0revealing-more-secrets
http://blog.backblaze.com/2011/07/20/petabytes-on-a-budget-v2-0revealing-more-secrets
http://www.imaging.org/IST/store/epub.cfm?abstrid=34413

	Introduction
	Features of Cloud Technology
	Technical Aspects
	Economic Aspects

	Technical Architectures
	Economic Considerations
	Experimental Results
	Projecting the Cost of Cloud Storage
	Future Work
	Economics
	Technology

	Conclusion
	Acknowledgements
	References

