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Abstract

The process of developing a digital collection in the context of a research project often 
involves a pipeline pattern during which data growth, data types, and data authenticity 
need to be assessed iteratively in relation to the different research steps and in the 
interest of archiving. Throughout a project’s lifecycle curators organize newly generated 
data while cleaning and integrating legacy data when it exists, and deciding what data 
will be preserved for the long term. Although these actions should be part of a well-
oiled data management workflow, there are practical challenges in doing so if the 
collection is very large and heterogeneous, or is accessed by several researchers 
contemporaneously. There is a need for data management solutions that can help 
curators with efficient and on-demand analyses of their collection so that they remain 
well-informed about its evolving characteristics. In this paper, we describe our efforts 
towards developing a workflow to leverage open science High Performance Computing 
(HPC) resources for routinely and efficiently conducting data management tasks on 
large collections. We demonstrate that HPC resources and techniques can significantly 
reduce the time for accomplishing critical data management tasks, and enable a 
dynamic archiving throughout the research process. We use a large archaeological data 
collection with a long and complex formation history as our test case. We share our 
experiences in adopting open science HPC resources for large-scale data management, 
which entails understanding usage of the open source HPC environment and training 
users. These experiences can be generalized to meet the needs of other data curators 
working with large collections.
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Introduction

The curators at the Institute of Classical Archaeology (ICA) at the University of Texas 
at Austin needed resources for managing an evolving data collection (~4.3 TB in size at 
the time of writing) efficiently and frequently. Besides being large in size, this data 
collection is in a semi-disorganized state, has a deeply-nested structure, and is 
constantly changing, such that the data continuously transitions from active research to 
publication and archiving phases. Only in the past four years, with a centralized 
infrastructure and a practical plan for data curation, has it been possible to manage new 
incoming data consistently (Esteva et al., 2010), still leaving a very large portion 
(~3 TB) of legacy data in need of organization and integration. Routine data 
management tasks such as finding records, identifying data types and production dates, 
sorting through multiple copies, culling corrupted and redundant files, and reorganizing 
data have been conducted manually, placing a significant burden on research staff.

To conduct these tasks more efficiently, the team started experimenting with 
powerful data analysis methods that exploit collection-level metadata related to file 
system, file formats, file sizes, and checksums. As a result of the analyses, the team can 
dynamically decide what files to send to the archive instance of the collection as they go 
about and curating the data. The metadata were extracted via the open source 
application DROID1 and custom-written scripts, but it became clear that with this 
constantly evolving collection, metadata needed to be extracted regularly to capture the 
changes and to iterate through the data curation pipeline. The metadata extraction step 
for such a large collection proved to be a serious bottleneck, taking a minimum of two 
days for DROID to run on the server where the collection is stored. In order to support 
more frequent metadata extraction with a short turn-around time, the idea of using the 
open science HPC resources at the Texas Advanced Computing Center (TACC) looked 
attractive. However, the curators at ICA did not have prior experience in using HPC 
resources.

The ICA staff applied for, and obtained, an ECSS-supported allocation through 
XSEDE (Charge No. TG-HUM130001), and with the help of HPC experts at TACC, 
developed familiarity with the HPC environment. Together they developed a metadata 
extraction workflow that can be used by data curators on HPC resources with minimal 
Linux training. The workflow is interactive so that the data curators can conduct and 
verify the different steps when needed. The development of the workflow involved: 

1. Porting the software to an open science HPC platform;

2. Transferring and synchronizing terabytes of data over the network to HPC 
resources at TACC for analyses and long term storage; and

3. Developing scripts for simultaneously running multiple copies of the software 
on different portions of the collection, also known as parallelization.

In this paper, we present an overview of the test collection, provide an introduction to 
HPC, and discuss the methods used in parallelizing the metadata extraction.

1 DROID v.6.1.3: http://www.nationalarchives.gov.uk/information-management/projects-and-
work/droid.htm
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A Complex Archaeological Data Collection

The ICA test collection consists of approximately one million files representing 40 years 
of research activities in Italy and Ukraine. Typical of a large archaeological archive 
touched by many generations of specialists, it contains everything from scanned 
photographs, drawings and field notes, to GIS datasets, 3D visualizations, and complex 
databases. Due to the multidisciplinary nature and long history of ICA’s research, these 
data have accumulated throughout many generations of scholars and students from 
various institutions and disciplines, each with its own research needs, technologies, and 
record keeping systems. As such, it has a rich history and complex layers of 
accumulation, a concept that resonates with the archaeologists dealing with its curation. 
Over time, efforts to consolidate, organize and document the digital collection had been 
piecemeal and dictated by specific research questions and technological limitations. The 
result was a disorganized collection without overarching consistency in the conventions 
of file naming, metadata, or organization.

Data Management Efforts

As ICA’s focus has recently shifted away from new fieldwork to publication, the state of 
the data was making it difficult for researchers to efficiently retrieve and assimilate 
digital resources for study, archiving, and dissemination. As a first step, data previously 
distributed over several hard drives and detached storage devices were consolidated on a 
shared server administered by the Liberal Arts Information Technology Services 
(LAITS)2. The ICA team can now access the full collection and work more 
collaboratively than before with new incoming data, albeit with some inevitable trade-
offs in access speed and loss of full control of the dataset.

Together with the team from TACC, a thorough assessment of the collection was 
performed, focusing on data from two archaeological excavations; one mostly born-
digital excavation from Chersonesos in Ukraine, the other digitized more recently from 
paper archives of an early excavation at Pantanello in southern Italy. These two projects 
resulted in a semi-automated record keeping and metadata system for data archiving, 
but a large portion (~3 TB) of the disorganized legacy collection remains to be 
inspected, documented and archived. To approach this work, a visual analytics tool was 
used to assess the collection’s structure and data types, and to prioritize areas for 
immediate attention (Esteva et al., 2013). Also, an Entity Resolution (ER) algorithm 
was developed to help identify and reduce data redundancy (Xu et al., 2013). Both tools 
use file format, file system and checksums of the entire collection to render results that 
aid making decisions about what data to reorganize, delete, archive, and make public.

Using these analysis tools, the team was able to detect large portions of corrupted, 
redundant and useful data, and considerably improved the state of the collection. 
However, to continue cleansing the data, the curators needed to improve the efficiency 
of the metadata extraction step. Because of the current flurry of research and data-
consolidation activities at ICA, once a metadata and checksum snapshot is complete, it 
quickly becomes obsolete. Just extracting a snapshot of the current collection was 
taking too long, placing too much load on the shared server, and becoming a bottleneck 
in the curation process. We decided to implement a semi-automated metadata extraction 
workflow using the HPC resources at TACC such that it could be conveniently run by 
curators with basic training on Linux and on HPC user environments.

2 Liberal Arts Information Technology Services: http://www.utexas.edu/cola/laits
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HPC for Data Management

During a research project’s lifecycle, functions such as data analysis, curation, archiving 
and access may be carried out simultaneously. These functions involve diverse 
technologies and require computational power relative to the size and complexity of the 
data collection. For large, complex and evolving data collections like ICA’s, data 
management tasks such as extracting metadata or calculating checksums quickly 
become effort- and resource-intensive. Thus, repeating these tasks at the desired 
frequency and speed becomes challenging in a non-scalable desktop computing 
environment. The quest for bigger computing and storage resources leads to HPC 
platforms and solutions. However, using these platforms, which are mostly Linux-
based, might be initially challenging for data curators without prior experience, as was 
the case with the curators at ICA. Through their collaboration with TACC, the ICA staff 
received HPC user environment training and consultancy in the development of a 
practical workflow for ongoing curation. They were first trained to install the required 
software, run scripts for data transfers, and run the scripts for metadata extraction on an 
HPC platform. During the workflow development phase, the curators were involved in 
testing when needed. The collaboration prepared them to work independently in an HPC 
environment, and the experiences gained in the process may be valuable for other 
projects with similar data management needs.

High Performance Computing: A High Level Overview

At a very coarse-grain level, HPC can be defined as computing carried out on a cluster 
of computational resources in order to reduce the overall time-to-results while solving 
large computational and analytical problems. The main principle involved in HPC is 
parallel processing, in which any given task and/or portion of data is divided among 
multiple compute-nodes that then work simultaneously to arrive at a given solution, 
hence reducing the overall time-to-results (Wilkinson and Allen, 2005). Each computer 
works on a piece of the big problem instead of one computer solving the entire problem.

Each computer in a cluster has processors, memory, storage and operating system 
associated with it. The individual computers forming a cluster are connected with each 
other through a high speed network and a software layer is required to make the 
individual computers in a cluster communicate with each other. The communication 
between the computers in a cluster is needed so that they can exchange their local 
results over the network while working on different pieces of a big problem. The local 
results can then be coalesced to accomplish a global result. Through this divide-and-
conquer approach, known as parallelization, the overall time-to-results can be reduced 
for most computational or analytical problems. It should be noted that there are some 
processes or computational problems that are inherently serial and hence might not be 
amenable for parallelization. However, even such processes can benefit from the large 
memory and high-end processing elements available on top class HPC platforms.

Extreme Science and Engineering Discovery Environment (XSEDE)3 and 
Partnership for Advanced Computing in Europe (PRACE)4 are major research 
infrastructures providing access to high-end HPC resources and services through a peer-
reviewed process in the United States and Europe respectively. Data curators in the 
United States and Europe can leverage these resources for their HPC needs without any 

3 Extreme Science and Engineering Discovery Environment: https://www.xsede.org
4 Partnership for Advanced Computing in Europe (PRACE): http://www.prace-ri.eu/

IJDC  |  General Article

http://www.prace-ri.eu/
https://www.xsede.org/


doi:10.2218/ijdc.v9i2.331 Arora, Esteva and Trelogan   |   21

direct cost to them. In addition, a large number of academic and government institutions 
have been making investments to establish their own private HPC infrastructure that is 
locally managed and shared within their campuses.

Most of the shared HPC resources run on the Linux Operating System and can be 
accessed remotely through a secure shell client. Therefore, if data curators are not 
familiar with Linux, they would first need basic training in this area. The open science 
HPC resources are simultaneously shared by multiple users and have a batch-processing 
environment with which the data curators would also need to gain familiarity.

It should be noted that due to the shared nature of the open science HPC resources, 
each user of the resource has a limit on the number of files and amount of the storage 
space on a given resource. Therefore, they might have to move their data between 
storage and computational resources as needed to comply with their account’s quota 
before and after their computational job is completed.

The open science HPC platforms have a life span that is mainly determined by the 
amount of funding available to cover the cost of setting up the infrastructure (hardware 
resources and physical space), system operation, and maintenance. Besides the 
budgetary constraints, advancement in the area of computer architecture and end user 
needs for higher computational power often drive the replacement of old HPC platforms 
with new ones. Therefore, when working in an open science HPC environment, the data 
curators would also need to be prepared to participate in data transfer and account 
migration to new HPC platforms when needed, including updates of any custom-
installed software. One also needs to be mindful of hardware and software 
compatibility.

These large HPC platforms undergo maintenance periodically. During the 
maintenance period, the HPC platforms are not accessible to their end users. Hence, 
data curators would need to plan for their data management activities taking the 
maintenance period into consideration. In addition to planned maintenance periods, 
there could be sporadic episodes during which an HPC platform could be unavailable. 
Hence, for critical tasks needing perpetual availability of data, curators should consider 
maintaining a duplicate copy of the dataset on a different (secondary) platform to 
increase the likelihood of data availability in the event the primary HPC platform is 
unavailable.

Solution Strategy

The goal of the work presented in this paper was to reduce the overall time spent in the 
metadata extraction for the test collection using parallel processing on the Stampede5 
supercomputer, an HPC resource at TACC. Stampede has more than 6400 compute-
nodes, each outfitted with two Intel Xeon E5 (Sandy Bridge) processors and an Intel 
Xeon Phi Coprocessor (MIC Architecture). Each Sandy Bridge processor on a compute-
node has eight cores, and hence in total 16 cores are available on each compute node. 
The frequency of the core is 2.7 GHz and has a theoretical peak performance of 21.6 
GFLOPS/core or 346 GFLOPS/compute-node. Each compute-node contains at least 
32GB of memory (2GB/core).

Setting up the semi-automated workflow for data curators at ICA to run on 
Stampede involved: 

1. Data transfer from the LAITS server to TACC’s computational and storage 
resources;

5 Stampede: http://www.tacc.utexas.edu/stampede/
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2. Installing DROID on Stampede;

3. Writing Linux scripts for running DROID in parallel, checksum calculation, 
load-balancing, etc.

In order to do parallel processing of the ICA collection, multiple instances of 
DROID and scripts for checksum calculation were run simultaneously on multiple 
compute nodes. It should be noted that only one installation of DROID was required for 
this purpose. We did not make any changes to the DROID code in order to achieve the 
goal of parallelization. Instead, we submitted a batch of DROID commands all at once 
to a set of compute nodes and provided different subdirectories as the parameters to 
these DROID commands. The results of all DROID runs were coalesced in the end to 
form a combined output file with the desired metadata. The process of combining the 
individual files into the final output file was carried out using existing DROID 
commands. In order to make the order of the files and directories the same in the output 
as both the serial and parallel runs, we sorted the output files in lexicographic order.

We checked the output of the serial run of DROID with the parallel run and did not 
find any loss of precision in metadata extraction. The process of running DROID in 
parallel is shown diagrammatically in Figure 1.

Figure 1. Parallel execution of DROID.

Because this collection has a deeply nested hierarchical structure, doing data-
partitioning for multiple parallel runs of DROID and the checksum script was not 
straightforward. We conducted experiments to determine a strategy for optimally 
distributing the portions of the data collection to multiple compute nodes so that one 
compute node does not have larger workload to manage with respect to other nodes. 
This is known as load-balancing. We selected a very coarse-grain data distribution 
scheme in which a list of subdirectories up to the second level of nesting was selected. 
Each DROID instance got a subdirectory to work with recursively. A high-level view of 
part of the directory tree is shown in Figure 2.

For fine-grained load-balancing, all the information related to the directory tree for 
the data collection, including the contents of the directory and the sizes of individual 
files, is required. This can be done using Linux commands like “du -sh”. However, 
running this command takes about the same amount of time as running DROID serially. 
Hence, the purpose of parallelization is defeated if too much time goes into analysing 
the directory tree for load-balancing purposes. For the entire ICA data collection, which 
has now grown to 4.3 TB, it took approximately six hours to extract the metadata using 
a single instance of DROID – or in running DROID serially – on Stampede.
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Figure 2. Partial directory tree showing multiple levels of nesting.

The parallel run with two instances of DROID, each working on one subdirectory of 
the parent directory of the data collection, took about four hours to complete. Figure 3 
shows the comparison of the time involved in running multiple DROID instances with 
different levels and numbers of subdirectories. It should be noted here that the level of 
nesting of the directory hierarchy, along with the number of files in each directory, has 
an impact on the overall runtime of the DROID jobs.

It is clear (from Figure 3) that in our test case, running 31 instances of DROID (as 
there are 31 directories at the second level of nesting) led to the shortest time-to-result 
with the optimal load-balancing scheme – one hour and fifteen minutes in total. The 
rate-determining step, the one that took longest to complete, was related to one of the 
subdirectories of a directory at level-1 of nesting-hierarchy. Since each compute-node 
that was involved in the parallel runs of DROID had 32 GB of memory only, we ran 
only one instance of DROID on this compute-node. It is possible to run up to 16 
instances of DROID on each compute node of Stampede, as there are 16 cores on each 
node. Each instance of DROID could be running on one core of the compute-node. 
However, the size of the directory associated with each DROID instance determines the 
total number of instances of DROID that can be launched on a node. This is because all 
the instances of the DROID software running on a node will have to use the shared 
memory available on the compute-node, which is 32 GB in case of Stampede. 
Therefore, to prevent the computational job from crashing due to memory-starvation on 
a node, it is important to distribute the parallel runs over multiple compute nodes such 
that each DROID instance has enough memory available to it.
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Figure 3. Comparison of time taken to complete metadata extraction with different number of 
DROID instances.

Challenges in Adopting HPC

The data transfer from the LAITS server to Stampede was completed in multiple 
attempts due to issues related to network connectivity, security and system down-time 
during maintenance. The initial transfer took approximately 28 hours using the rsync 
utility that provides fast incremental data transfers and the subsequent syncing of only 
changed files took insignificant amount of time.

We also ran into some challenges while using DROID in the Linux environment on 
Stampede. We had to make sure that no two instances of DROID are working on 
directories that share a parent-child relationship. We also observed that DROID uses the 
system time in milliseconds for generating a unique identification number. This unique 
identification number (or timestamp) is used in creating database profiles. However, 
when running multiple DROID instances simultaneously, it was common to see that 
more than one DROID instances were trying to create profiles with the same 
identification number and eventually crashing due to the collision with each other. As a 
workaround for this problem, we pipelined the DROID runs so that no two DROID 
instance start their processing at the same time.

Normally, the checksum calculation is part of the metadata extraction process, but 
the command-line version of DROID that we used did not support the same. Hence, we 
had to write our own Linux script for the checksum calculation and run it separately 
from DROID for extracting rest of the metadata.

The performance of the DROID tool on Stampede seems to depend upon the overall 
load on the file system (which manages the files on the storage hardware) that houses 
the data collection and the rate of the network traffic. If an rsync process is running 
simultaneous to a DROID process, then in such scenarios we observed that the 
performance of DROID is negatively impacted. Moreover DROID is written in Java 
programming language and does not support distributed memory and shared memory 
parallelization inherently.

IJDC  |  General Article



doi:10.2218/ijdc.v9i2.331 Arora, Esteva and Trelogan   |   25

Generalizing the Test Case

For ICA’s data collection, the workflow implemented on TACC’s HPC resources 
consisted of:

1. Transferring all the data from remote storage to compute resources;

2. Extracting metadata, calculating checksums, and outputting the results as a *.csv 
file;

3. Syncing/updating the collection so that it reflects how it has changed as data are 
added, reorganized and cleaned; and

4. Repeating the process from Step 2.

To generalize this test case, a user will have to consider issues related to their particular 
collection, such as size, structure and location in relation to the available HPC 
infrastructure and the networking speed between computational and data storage 
resources to assure efficient large data transfers.

Supercomputing centres have high speed connections between the computational 
and the data storage resources that they maintain, as well as with the outside world. In 
addition, open science national HPC resources are connected through powerful 
academic networks and have multiple protocols and technologies for efficient data 
transfer. However, for remote users working outside of powerful networks or without 
access to efficient data transfer technologies, transferring large amounts of data can 
become a significant bottleneck in their projects. In our model, the collection is stored in 
a remote location, albeit within the University of Texas at Austin network.

The advent of data intensive research is directly impacting the architecture and 
configuration of HPC platforms to avoid time spent in transferring data from storage to 
compute nodes and to speed up computational processing times. The latest HPC 
platforms are designed and deployed to include tiered storage that enables fast reading 
and writing of data, and executes millions of input/output operations per second (TACC, 
2013). Thus, they combine data management and storage with computational analysis 
functions. Therefore, curators would need to consider the features of the available 
hardware infrastructure and their software for selecting a parallelization strategy.

Curators Training and HPC Adoption

In order to make the metadata extraction workflow an integral part of the test 
collection’s data management activities, the ICA team needed to learn how to perform 
all its steps independently. As the curators were mostly unfamiliar with working in an 
HPC environment, initial training on the resources at TACC along with basic Linux 
commands for dealing with data transfers, file permissions, and running of scripts was 
required. Although the learning curve was somewhat steep for those with no prior Linux 
experience, it required about two days of practice to become proficient at copying and 
syncing the data collection, basic trouble-shooting and the running of batch scripts. 
After an initial one-on-one training session, and some self-paced online Linux tutorials, 
the curators were ready to transfer the data collection from a remote server to the TACC 
system. Some further instructions and correspondent scripts were given for running 
DROID serially and in parallel, and both tasks were accomplished successfully.
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Most of the instructions from the trial runs of these methods came in the form of 
cookbook style recipes. These are easy enough to follow and can be deconstructed to 
understand what each parameter entails, but if errors are generated during any steps of 
the routines, it is difficult for novice users to troubleshoot. A ticket system is in place for 
questions, but further training would be needed to give the users enough confidence to 
ask for help in a meaningful way. Further training to obtain a deeper understanding of 
the systems architecture and the use of advanced Linux commands and batch scripting 
would go a long way toward ensuring the adoption of these resources by non-traditional 
HPC users.

Conclusions and Future Work

As data collections grow in size (e.g., 4 TB and above), routine data management tasks, 
such as extracting metadata, calculating checksums and allowing dynamic archiving, are 
difficult to perform in a desktop computing environments. However, with the massive 
growth in the size of data, data management is a data-intensive computing problem now. 
Implementation of data management workflows over HPC resources is one solution for 
the fast data processing required for efficiently managing large and evolving collections. 
Through this scalable solution, variable loads of data can be managed at the desired 
frequency. Tasks like metadata extraction, file-format conversions and checksum 
calculation can be made a part of the workflows that can be run as batch processes on 
HPC resources, thus freeing the local resources at the data curators’ end for other tasks. 

Transferring large data from remote storage locations to the compute nodes for 
completing tasks can produce noteworthy bottlenecks. These can be mitigated by access 
to high speed networks, or by storing data in close proximity to the computing 
resources. Depending on the computing resources available, there is more than one way 
or technology to implement parallelization of metadata extraction tools (Schlarb, 2013). 
Given that DROID was not designed for parallel processing, the possibility to modify 
DROID for supercomputing environments also exists. Future work will involve 
implementing DROID in a Hadoop-configured environment and comparing its 
performance with our current results.

Our current work helped achieve the goal of obtaining updated collection snapshots 
and has also demonstrated that it is possible for data curation workflows to be moved to 
HPC resources. The lessons learnt from this project indicate that by lowering the 
adoption barriers to HPC through trainings and workshops, the likelihood of performing 
data management tasks frequently and efficiently will increase. Thus, the access to and 
reuse of the ever expanding quantities of digital data will increase.
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