
Migrating Home Computer Audio Waveforms to Digital Objects 79

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Migrating Home Computer Audio Waveforms to Digital
Objects: A Case Study on Digital Archaeology

Mark Guttenbrunner, Mihai Ghete, Annu John, Chrisanth Lederer, Andreas Rauber,
Vienna University of Technology,

Vienna, Austria

Abstract
Rescuing data from inaccessible or damaged storage media for the purpose of preserving the digital
data for the long term is one of the dimensions of digital archaeology. With the current pace of
technological development, any system can become obsolete in a matter of years and hence the data
stored in a specific storage media might not be accessible anymore due to the unavailability of the
system to access the media. In order to preserve digital records residing in such storage media, it is
necessary to extract the data stored in those media by some means.

One early storage medium for home computers in the 1980s was audio tape. The first home
computer systems allowed the use of standard cassette players to record and replay data. Audio
cassettes are more durable than old home computers when properly stored. Devices playing this
medium (i.e. tape recorders) can be found in working condition or can be repaired, as they are
usually made out of standard components. By re-engineering the format of the waveform and the
file formats, the data on such media can then be extracted from a digitised audio stream and
migrated to a non-obsolete format.

In this paper we present a case study on extracting the data stored on an audio tape by an early home
computer system, namely the Philips Videopac+ G7400. The original data formats were re-
engineered and an application was written to support the migration of the data stored on tapes
without using the original system. This eliminates the necessity of keeping an obsolete system alive
for enabling access to the data on the storage media meant for this system. Two different methods to
interpret the data and eliminate possible errors in the tape were implemented and evaluated on
original tapes, which were recorded 20 years ago. Results show that with some error correction
methods, parts of the tapes are still readable even without the original system. It also implies that it
is easier to build solutions while original systems are still available in a working condition.1

1 This paper is based on the paper given by the authors at the 6th International Conference on Preserva
tion of Digital Objects (iPres 2009), October 2009; received January 2010, published March 2011.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.

80 Migrating Home Computer Audio Waveforms to Digital Objects

Introduction
With storage media technology constantly changing, devices for reading certain

media become obsolete. However, not only the devices, but also specimens of the
computer systems needed to access the data stop working every day. Accessing data on
an 8-inch floppy disc requires not only a disc drive, but also a system to connect it to,
together with the right software to interpret the data on a logical level. This is all
necessary to access the information contained on the floppy disc.

Estates submitted to archives now and in the future not only contain information
on paper but also include digital data (e.g., digital diaries) on various storage media.
As we have to deal with this data at the time it is ingested in the archive, we have to
find methods to extract data from already obsolete storage media and make sure we are
able to migrate it to a format that can be used in the digital archive.

A popular storage medium for home computers in the early 1980s was audio tape,
also called a compact cassette2. As devices that could read and write audio tapes were
readily available in most households for recording and playing music, some home
computer systems featured connectors for the headphone and microphone jacks of
such audio systems that could be used to store and retrieve data. The data was first
converted into an analogue waveform by the computer system and then recorded to a
standard magnetic audio tape through the microphone input of the audio device. To
retrieve the data, the tape was played back on the audio device and the audio waveform
was read by the computer system through the headphone connector. High amplitudes
in the waveform were recognised and the resulting data decoded into a binary stream
that was then usable by the original system.

As there was no standardised format across the different home computer
platforms, tapes are usually only readable by the system that was used to write them.
To retrieve the data from such storage media today we therefore need access to the
original system, a tape drive and a person with the knowledge of handling the original
system. As audio tape playing devices are still readily available and made of standard
components, it is fairly easy to track down a device able to replay tapes. Getting a
working specimen of the original system, as well as a person to handle the system, can
be a more difficult task.

In this paper we present a methodology and an application we developed that
allows us to retrieve data written by the Philips G7400 home computer system without
access to the original system. By using a tape drive and a common personal computer
with a sound card, we record the audio output of the tape drive and decode the
waveform. The resulting bit-stream is then interpreted and the data is migrated to a
non-obsolete format that can be ingested into an archival system. Our application may
also be used for carrier refreshment - storing the original data again onto an audio tape,
correcting errors introduced by the decay of the waveform on the original tape.

We first present related work on the topic and present the original system this
work is based on. In the following section we explain how the physical format was
reengineered. After that, we show how the different types of data are stored logically.

2 Compact Cassette – Wikipedia: http://en.wikipedia.org/wiki/Compact_Cassette.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://en.wikipedia.org/wiki/Compact_Cassette

Mark Guttenbrunner et al. 81

Next, we present an application we developed that allows us to migrate data from
waveforms, together with the two methods we used to convert the recorded waveform
into binary data. We show the results of using each method on original tapes, including
how much of the data we were able to recover. Finally we present our conclusions.

Related work
The UNESCO guidelines for the preservation of digital heritage (Webb, 2005) list

four layers where digital data can be threatened.

Audio tapes are magnetic tapes and are subject to various threats on the physical
level, as described by Bhushan (1992). By converting the analog waveforms to digital
waveforms and storing them as digital audio-files on current systems we can avert the
immediate threat on the physical layer.

To prevent loss of data on a logical level it is necessary to re-engineer the
encoding of digital bits in the analog audio signal. In a report by Ross & Gow (1999)
an experiment with a Sinclair Spectrum is described, where audio data was migrated to
a corresponding binary stream, which could then be interpreted using an emulator of
the real system.

However, to separate the digital objects from their original environment, the bit-
streams have to be interpreted in such a way as to extract the conceptual object from
the logical bit-stream. By extracting the content and saving it to a format which is not
obsolete at the time of migration, we can transform the data to a format that is
accessible without the original hardware. No expert is needed to operate the original
system, as is necessary with emulation as a preservation strategy.

The essential elements of the digital object can then be added on ingest in an
archival system.

On the system we used for our case study, BASIC was used as a main
programming language. Source code is a significant property of software and can be
necessary to interpret the data stored by applications, and is also necessary if software
is migrated for preservation purposes (Matthews et al., 2008). As the system is used as
a video game console as well, some of the programs are video games. This provides us
with a situation where migration would be a possible solution to preserve some video
games for the system (Guttenbrunner, Becker, & Rauber, 2009).

Original System
For our case study we decided to use the Philips G74003. Originally designed as a

video game system with a keyboard, it can be extended to become a home computer
with a Microsoft BASIC operating system using the C7420 expansion cartridge. This
cartridge also features three connector cables for data input, data output and a remote
controlling signal used to start and stop the audio tape, if supported by the tape player.

3 Philips G7400 - Wikipedia: http://en.wikipedia.org/wiki/Philips_Videopac_%2B_G7400.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://en.wikipedia.org/wiki/Philips_Videopac_%2B_G7400

82 Migrating Home Computer Audio Waveforms to Digital Objects

The system was chosen as it is already very hard to find specimens in working
condition, so there is an imminent threat of permanently losing the data saved with this
system. It also met our second criterion: off-the-shelf audio recorders and tapes could
be used for storage purposes.

The Philips Videopac+ G7400 Video Game Console System
In 1968, Ralph Baer created the prototype for the first home video game called

Brown Box (Baer, 2005). The American company Magnavox released the system to
the public in 1972 as the “Magnavox Odyssey”. The system used cartridges that did
not store any information but interconnected different electronic parts to create the
desired built-in games. Only black/white output was created and by applying different
overlays on the TV for every game, the impression of colour was created.

In 1978, the successor to the Magnavox Odyssey, the Magnavox Odyssey2, was
sold in America (Herman, 2001). In Europe the system was sold by Philips under the
name “Videopac G7000” (Forster, 2009). This system used an Intel 8048H CPU and
the custom “VDC” (video display chip) Intel 8244 to display various different
onscreen objects.

Magnavox also started to develop a successor to the Odyssey2, the Odyssey3. The
system was equipped with a more powerful graphics chip than its predecessor, but was
made backwards compatible to the Odyssey2. It was never sold to the public, even
though some prototypes4 were found by video game collectors in yard sales in the area
of Magnavox’ head quarters in Knoxville, TN, USA. In Europe, the Videopac G7000
system was more successful than the Odyssey2 in the US, so Philips released the
Odyssey3 under the “Videopac+” brand as the “Philips G7400” (shown in Figure 1) in
1983. The system was able to use all the cartridges for the original system, but some
additional cartridges only playable on the G7400 were also released. As home
computers got more popular during that time, and the Philips Videopac systems were
equipped with a keyboard all along, an additional cartridge that converted the system
to a fully-fledged home computer was released.

Figure 1. Philips Videopac+ G7400 game console system.

The Philips C7420 Home Computer Module
In 1983, shortly after the release of the Philips G7400 game system, Philips

released the Home Computer cartridge as an add-on to convert their console system to
a fully-fledged home computer. As the built-in 8048 processor was not powerful
enough for this task, the system itself was used for input and output only, and the
computing was done mainly by a Zilog Z80 micro processor running at 3.754 Mhz and
4 Odyssey 3 Prototypes: http://www.dieterkoenig.at/ccc/po/s_po_o3.htm.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.dieterkoenig.at/ccc/po/s_po_o3.htm

Mark Guttenbrunner et al. 83

stored in an extra case connected to the main system (shown in Figure 2). The home
computer module had 18 Kbytes ROM inside the cartridge. Microsoft BASIC was
used as a programming language for the home computer add-on and used up 8 Kbytes
of this. 16 Kbyte RAM were also integrated in the module, of which 14 Kbyte could be
used for user programs.

To save and load programs to external storage, a microphone and a headphone
connector were included, which allowed the storage of data and programs utilising
home audio equipment and standard audio-tapes.

Besides the manuals included with the cartridge, a book teaching how to program
the system and including some example programs was released in France in 1984
(Bardon & de Merly, 1984).

Figure 2. Philips Videopac+ C7420 Home Computer Cartridge: The cartridge plugs
into the system at the front, connecting to the main case that holds the additional CPU
and memory in the back. The connectors for loading/saving data to an audio system
(red, white and black cables for microphone, headphones and remote control) are
attached to the main case.

Figure 3. Waveform of “Hello World” BASIC Program (1: initial 6 kHz lead-in tone;
2: 256 x 0xFF as start of file-signature; 3: file header; 4: 128 x 0xFF as header/data
separator; 5: data block).

Figure 4. Representation of One Byte in the Waveform. One start bit (1), eight data
bits (least significant first: 11010011b = D3h), 2.5 stop bits (0).

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

84 Migrating Home Computer Audio Waveforms to Digital Objects

Re-Engineering the Waveform
Data on the system can be stored in various formats. The BASIC programming

language variant that comes with the system supports saving program listings,
screenshots, and storing and retrieving self-defined data (text strings and number
arrays) using various forms of the “CSAVE” instruction.

In order to start re-engineering the storage encoding, the original machine’s output
was connected to the input of a PC’s sound card. We started by writing some test
programs on the original machine and recording the resulting audio files using
Audacity5. One resulting waveform can be seen in Figure 3. By recording different test
programs we were able to find out that there is always a 2.77 second lead-in frequency
of a 6 kHz sine wave. The data block is stored in a 4.8 kHz sine wave encoding bit set
(‘1’) as a tone and bit cleared (‘0’) as silence. Every byte is encoded as one start bit
(tone), followed by eight data bits (storing least significant bits first) and 2.5 stop bits
(silence), as in Figure 4. The data is stored at a rate of 1200 bits per second. Every file
consists of the following data-bytes in the following order:

No. of Bytes Code Contained Information
256 0xFF <start of file>-signature
32 file-header
128 0xFF separate header / data
<variable size> data-block
10 0x00 <end of file>-signature

Table 1. Data-bytes Contained in Every File.

During our online research we also found an active community6 that is still using
and programming this system. One of its members, René van den Enden7, had written
small programs that allowed BASIC programs to be transferred between the original
system and a PC. On request, he provided us a copy of the source code of his
programs, which confirmed part of our research regarding the format and provided
more details we had not figured out at this point of our investigation.

Re-Engineering File Formats
To understand the logical format of the data stored in the waveforms it was

necessary to find out what kind of data the C7420 can store. Using the original user
manual it became apparent that the C7420 is able to store five different kinds of data
with the following commands:

Object type Command
BASIC Programs CSAVE
Screenshots CSAVES
Arrays CSAVE*
Strings CSAVEX
Memory Dumps CSAVEM

Table 2. Commands Used to Store Different Types of Data.

By saving different kinds of test data we were able to first identify the format of
the 32-byte file header, which is used for determining the format of the data block:

5 Audacity: http://audacity.sourceforge.net/.
6 Videopac / Odyssey2 Forum: http://videopac.nl/forum/.
7 Rene’s VIDEOPAC page: http://home.kpn.nl/~rene_g7400/.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://home.kpn.nl/~rene_g7400/
http://videopac.nl/forum/
http://audacity.sourceforge.net/

Mark Guttenbrunner et al. 85

• 10 bytes 0xD3;
• 1 byte determining the format of the file, usually the character after

“CSAVE” (e.g., ‘S’ for screenshot, 0x20 (Space) for a BASIC program);
• 6 bytes for the program name;
• 1 byte 0x00;
• 5 bytes ASCII characters of the line number at which the execution of the

program should start (for BASIC programs only);
• 3 bytes 0x00;
• 2 bytes start address in memory (Least Significant Byte (LSB) first);
• 2 bytes length of data block in bytes (excluding the first leading byte 0x00,

LSB first);
• 2 bytes checksum: all data bytes added up to a 16-bit value (LSB first).

The data block (which is separated from the file header by 128 bytes 0xFF) starts
with 0x00 and continues, depending on the specified format in the file header, with the
following data:

Basic Program
For BASIC programs, the data block is split up into lines, which contain the

following information:

• 2 bytes RAM address of the next BASIC line (LSB first);
• 2 bytes line number (LSB first);
• The actual line with the BASIC commands;
• 1 byte 0x00.

At the end of the BASIC program, a data block of 2 bytes (0x00) is written.

Every BASIC command is encoded as a byte code between 0x80 and 0xDF. The
byte codes for all other characters in a BASIC command line (including white space)
are stored exactly as they are input in the program.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

86 Migrating Home Computer Audio Waveforms to Digital Objects

Example BASIC line and encoding:

10 PRINT “HELLO”

Bytes Representing
CF 88 0x88CF (address of next BASIC line in RAM)
0A 00 0x000A = 10 (line number)
94 PRINT (encoded command)
20 22 <SPACE><QUOTATION MARK>
48 45 4C 4C 4F H E L L O
22 <QUOTATION MARK>
00 indicates end of line

Screenshot
The Philips G7400, using the C7420 Home Computer Module, can display images

that are built together by using 8x10 pixel characters. 23 of the 24 40-column rows on
the screen can be used for graphics. The uppermost row is used to display internal
information such as cursor coordinates and cannot be accessed using the standard
functions for loading and saving screenshots.

Users can change the representation (glyph) of the built-in graphics and text mode
characters using the SETEG and SETET commands. Both of these commands have
two parameters: the character code of the symbol to be replaced and a string consisting
of twenty hexadecimal digits describing the appearance of the symbol. Each character
uses an 8x10 pixel grid and is encoded as follows:

• Two hexadecimal digits (one byte) are used for each row of the grid,
starting with the topmost one.

• The n-th bit of such a byte, starting with the lowest significant bit,
corresponds to the n-th pixel of the row from the right.

A screenshot data block contains character and formatting data which can be used
to fill 23 40-column rows on the screen, and thus is 1840 bytes long. Only the pointer
to the used character and the formatting byte are stored in a screenshot file. User
defined characters are lost if the program defining the characters is not stored together
with the screenshot file.

The formatting of every two bytes of data for each screen position is described
below, as well as how the formatting data for a byte influences the rendering of a
character on the screen. An example image loaded in the migration tool can be seen in
Figure 5.

Formatting
Each of the 40x23 characters is encoded using two bytes: one byte containing the

character code, followed by a byte containing formatting data. A character is displayed
either in text mode or graphics mode - this is stored as part of the formatting byte
associated with it and determines the graphical representation (glyph) used, as well as
the meaning of the remaining formatting data, as shown below:

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 87

Figure 5. Migration Tool with Image Loaded from Wav File.

Format Byte Bit Usage in Text Mode:

 7 6 5 4 3 2 1 0 (lsb)
 | | | | | | | |
 | | | | | +-+-+--- foreground colour
 | | | | +--------- !blink
 | | | +----------- double height
 | | +------------- double width
 | +--------------- reverse
 +----------------- 0 (controls graphics mode)

Format Byte Bit Usage in Graphics Mode:

 7 6 5 4 3 2 1 0 (lsb)
 | | | | | | | |
 | | | | | +-+-+--- foreground colour
 | | | | +--------- !blink
 | +-+-+----------- background colour
 +----------------- 1 (controls graphics mode)

Foreground and Background Colours
There are eight possible colours, each being a combination of red, green and blue.

In the three bit representation used by the device, the first (least significant bit)
determines the amount of red, the second bit determines the amount of green and the
third bit determines the amount of blue. The resulting colours, ordered from 0 to 7 are:
black, red, green, yellow, blue, magenta, cyan and white.

In graphics mode, each character has its own foreground and background colour
as specified by the character’s formatting byte.

In text mode, each character has its own foreground colour encoded in the
formatting byte. The background colour is “inherited” from the last character
previously encountered on the row that was either a graphics mode character or a text

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

88 Migrating Home Computer Audio Waveforms to Digital Objects

mode character with a code greater or equal to 128. In the second case, the background
colour is taken from the same bits as the graphics character (bits 4, 5 and 6). This
method is generally used for setting the background colour at the beginning of a row
and can be seen in screenshots originating from the device - the first column contains
characters with code 128 and a formatting byte with both hexadecimal digits set to the
desired background colour for each line.

Double Width and Height
Text mode characters can be displayed in double width or height. Since glyph

sizes are fixed, two consecutive grid cells/glyphs are required to fully display one
double width or double height character, and a total of four cells/glyphs are required
for a double width, double height character. Setting the double width / double height
attribute for a single character results in only half of it being shown (or a quarter, if
both attributes are set).

The same character code / format pair must yield two or four different glyphs,
depending on which part of the character needs to be drawn. The rules used to
determine which part to draw are as follows:

Double width: Each occurrence of a double width character after a single width
character (or after a complete double width character) uses the first glyph (left part of
the character). A double width character directly following the first glyph uses the
second glyph.

Double height: Each line is assigned either top glyphs or bottom glyphs. A line
containing double height characters that comes after a line containing no such
characters uses top glyphs, consecutive lines are assigned bottom and top glyphs in an
alternating fashion.

Blink and Reverse
The blink attribute makes a character blink on the screen - it is shown for one

second, then hidden for one second, then shown again, and so on.

The reverse attribute reverses the background colour and foreground colour of a
character. It also reverses the blinking phase for that character.

Array
The first byte of an array encodes the number of dimensions of the array. For each

dimension, two subsequent bytes encode the number of fields in the dimension (LSB
first). Finally, for every entry in the array, four bytes are used to express the value in
different formats, depending on whether the array contains strings or numbers.

String Array
• 1 byte length of the string in bytes;
• 1 unused byte;
• 2 bytes address of the string in memory.

Note that the actual string data is not saved in the array but the strings have to be
saved and loaded separately using the string save command “CSAVEX”.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 89

Number Array
By saving number arrays on the original system, examining the resulting byte

stream, changing values and re-loading the array onto the original system we were able
to find out that a floating point format is used to store numbers. The encoding is
similar to, but does not follow, the IEEE 754 floating point standard (IEEE, 1987), as
that was released two years later than the C7420 cartridge. With further testing, the bits
for mantissa, sign and exponent were determined. Four bytes are used to encode the
number as a 32-bit floating point value (LSB first), with the following meaning of the
bits:

bit 25-32 bit 24 bit 1-23
exponent

(exponent bias = 129)
sign

(1 = negative)
mantissa

Table 3. Meaning of the Bits in a 32-bit Floating Point Value.

So any number can be calculated using equation 1:

number = sign * mantissa * 2exponent (1)

where,

sign = (-1)<bit 24>

mantissa = 1 + (<bit 1-23> / 223)
exponent = <bit 25-32> - 129

String
Strings are stored as a stream of bytes using the ASCII encoding (number of bytes

according to the file header information).

Memory Dump
Memory dumps are stored as byte values (number of bytes according to the file

header information).

Converting Waveform to Bit-Stream
In order to write a tool that is able to convert the waveform into usable data, we

had to develop a method of interpreting the waveform programmatically and detecting
the various stages in the signal.

In our tests the signal was sampled as a 48 kHz, 16 bit, mono signal. As the
C7420 outputs the signal at a rate of 1200 bits per second, we can calculate the number
of samples per encoded bit (spb) using the following equation:

where,

spb = samples per bit in the digitised audio stream;
f = sample frequency of the waveform;
bps = bits per second as output from the C7420.

The signal output by the C7420 is a sine wave with a frequency of 4.8 kHz, so
every bit is represented by four sine periods.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

90 Migrating Home Computer Audio Waveforms to Digital Objects

We implemented two different methods of interpreting the signal. Method 1 was
taken from the sample programs we got from René van den Enden. For each sample,
we need to decide if it marks silence or signal. The algorithm scans the sample stream
of the digitised waveform until an absolute value greater than half the maximum
amplitude of the signal is found. High amplitude is interpreted as a signal, such as the
start of a coded bit “1”. More samples are subsequently read and counted either as
“signal” or “no signal”. If more than a certain amount of “no signal” samples are
found, it is assumed that the end of a coded “1” has been reached and a coded “0”
starts. For a coded “1” bit to be properly recognised, half the number of samples over
the duration of four sine waves has to be interpreted as “signal”. Figure 6 shows a
sample waveform and the values counted as “signal” (marked on the horizontal axis as
“1”) and “no signal” (marked as “0”).

Figure 6. Interpretation of the Wave Signal Using Method 1. Vertical axis shows the
strength of the amplitude; horizontal axes show the parts of the sine wave interpreted
as “signal” (1) or “no signal” (0).

While we were able to read the original signal output by the console system
without errors using this method, we encountered the following problems when we
tried to interpret the signal stored on audio tapes:

• Missing parts of a coded bit: As a certain threshold of “no signal” was
defined as the beginning of a coded “0”, errors were encountered while
interpreting the signal if a small part of the bit had been lost due to data
loss on the audio tape.

• Noise in the signal: Most parts of the tapes contained noise which was
incorrectly interpreted as signal.

• Differences in amplitude due to independent recordings on the same
tape: While we were able to adjust the level of the input signal using the
software for recording the signal from the audio source, changes in the
signal over various parts of one tape made parts of the tape unreadable.

To reduce the sensitivity of the algorithm that converts the waveform into a bit
stream we implemented a second method. For Method 2 we not only looked at single
samples in the waveform, but also calculated the sum of piecewise linear
approximations of the amplitude, thus calculating the arc length of the sine wave for
silence and signal first. Obviously, the arc length of a curve for a bit that represents “1”
is longer than the arc length of a curve for a bit that represents “0”. To decide if a bit is
set or cleared, a cut-off value between signal and silence wave arc length is used.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 91

For every sample in the signal, a certain amount of samples before it are used to
calculate the arc length of the sine wave up to the sample. If the arc length is above the
cut-off value then the sample is recognised as “1”, otherwise it is recognised as “0”.

The algorithm is also able to adjust itself to changes in volume or noise, as the
threshold which decides if a bit is set or cleared is constantly adjusted for every file in
an input stream in parts of the signal which are known to be signal or silence. This way
we are able to compensate for noise in the signal, as well as for changes in volume.
Missing parts of a signal bit have less influence in the recognition, as not only the
missing part, but also all parts before it are used to decide the state of the bit.

Migration Tool
Using the algorithms for converting the digitised waveform to a binary stream

native to the system, together with the information we gathered about file formats, we
developed a tool that is able to read the data contained in the waveform. Both
described methods of interpreting the waveform were implemented.

The tool is written in JAVA. By using a virtual machine as a platform, the tool is
independent from actual hardware for better long term stability. The tool and demo
files can be found on the project homepage8.

The following functions were implemented in the migration tool:

• Opening an audio stream and loading the contained files, either from an
audio file (WAV or FLAC) or directly from an audio-in device;

• Opening files in the C7420-native file format (binary streams converted
from WAV-file);

• Saving the opened audio stream as a C7420-native file format (binary
stream);

• Saving data in a non-obsolete format (screenshots as PNG, BASIC-
programs and arrays as text files, binary data as binary);

• Saving data as an audio stream, either to an audio file (WAV or FLAC) or
directly onto the standard audio-out device;

• Opening and saving compressed zip-archives containing a collection of
migrated files;

• Creating new files of the different formats in the application, including
syntax highlighting for BASIC-programs.

All the data formats used by the C7420 as described in the Re-engineering File
Formats section above are supported by the migration tool.

Every file is opened in a new tab inside the application in an editor that is linked
to the file type. The information associated with the file and stored in the file header
(native file name, address in memory to load to) can be edited as well. A screenshot of
the migration tool can be seen in Figure 7.

8 Migration Tool: http://www.ifs.tuwien.ac.at/dp/hc_audio_migration.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.ifs.tuwien.ac.at/dp/hc_audio_migration

92 Migrating Home Computer Audio Waveforms to Digital Objects

Figure 7. Screenshot of the Migration Tool GUI with Seven BASIC Programs
imported from a WAV-File Recorded from an Original Tape. The import-log on the
lower left shows events and errors during the import. Various import settings can be
configured on the upper left and the imported programs are shown in tabs on the right.

Evaluation
To evaluate the usability of the migration tool, we recorded different programs

and other data as output from the original system. The data was recorded as a
waveform using Audacity and then converted to user readable data in the migration
tool, using both implemented methods for converting the waveform. Then the data was
loaded back into the original system, both from the recorded audio stream and from a
stream re-encoded using the migration tool.

The migration tool was able to restore all the data in the waveform as output from
the original machine with both methods of converting the signal. The original stream
outputted by the machine and the re-encoded stream from the migration tool, both gave
the same results when the data was loaded back to the original machine. For a clean
signal that was not distorted due to age, the migration tool perfectly read and wrote the
data from and to the original machine.

Figure 8. Tapes Used for Evaluation of Migration Tool. Upper left corner: C10
computer cassette; lower left and right Philips FE-I 60 normal position audio tapes.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 93

Additionally, we acquired three audio tapes created with the original system
approximately 20 years ago from a private archive. Two of the tapes were standard
Philips FE*I 60 normal position audio tapes as used for recording music, while one
was a C-10 computer cassette tape from manufacturer a11, specially manufactured for
recording data (Figure 8). The source who recorded the tapes and the contents was not
known before we started the experiments.

We used a standard HIFI-system as an audio player and the software Audacity to
record the audio streams as 44 KHz, 16 bit mono digital signal. The audio streams
were saved as uncompressed WAV-files (Petermichl, 2009) containing the pulse code
modulated (PCM) (Cattermole, 1969) raw audio data as bit stream. Two of the tapes
had data recorded on both sides of the tape; one had data only on side A. Five WAV-
files were obtained, one per side and per tape.

Each file was then loaded using the migration tool. The resulting migrated files
were stored in a zip archive. For comparison, the files were also loaded onto the
original system.

A visual check for the characteristic waveform was done using Audacity to see
how many files we expected the migration tool and the original system to find. A
comparison between expected and loaded files can be found below (first column for
each method shows recognised files, second shows unrecognised files and third shows
false positives):

tape-
side

visual C7420 method 1 method 2

C10-A 8 5 3 0 8 7 1 5
C10-B 2 1 1 0 2 2 0 0
Philips-
1-A

6 0 6 0 6 6 0 3

Philips-
2-A

6 0 6 0 6 6 0 2

Philips-
2-B

1 0 1 0 1 1 0 0

Total 23 6 17 0 0 22 1 10

Table 4. Comparison Between Expected and Loaded Files.

Some files on the C10 tape were recognised by the original system, but could not
be loaded due to a “Bad Label” error (with the suggestion to reposition the tape); while
on the other two tapes no files were recognised at all. No files were correctly
recognised using Method 1. All but one file were recognised by Method 2. Ten
additional files recognised using Method 2 were false positives that were easily
detectable in the user interface and recognition could even be suppressed by checking a
checkbox in the migration tool.

The files that were recognised contained BASIC-programs. To check the files for
validity, we loaded them onto the original system from the tape and also loaded them
onto the original system as output from the migration tool.

From the 23 files on the three tapes no file was readable and usable on the C7420.
All the six files that were recognised on the tapes were loaded with a “Bad File” error
message and were not usable due to missing lines and incorrectly interpreted bytes.
Thus, the original system could not be used to load the data from the original tapes.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

94 Migrating Home Computer Audio Waveforms to Digital Objects

The results of recognised data in the loaded files using the migration tool can be
seen below:

tape-side loaded not recognised or
wrong file format

with
errors

no
errors

C10-A 7 0 4 3
C10-B 2 0 2 0
Philips-1-A 6 1 5 0
Philips-2-A 6 1 5 0
Philips-2-B 1 1 0 0
Total 22 3 16 3

Table 5. Recognised Data in Loaded Files Using the Migration Tool.

Of the 22 files loaded, three files could be recognised without errors. 16 files were
loaded with various warnings in the migration tool, indicating that some bytes could
not be recognised or were misidentified (e.g., wrong checksum, missing bits in bytes).
Three files were not recognised in the correct format and shown as binary stream only.

Without manual preprocessing of the waveform or manual post-processing of the
binary stream, we were able to recover 19 files opposed to just six files loaded by the
original system.

The files loaded with errors were in various states of completeness. Some files
were missing various lines at the end of the file. Other program lines were erroneous
due to incorrectly identified bytes (an example can be seen in Figure 9). As the original
data stored on the tapes was not available for comparison, it is not possible to quantify
the errors. But in general it seems that only single bytes were lost. As the data on the
tapes consists of BASIC programs, it should be possible to correct the errors by re-
engineering the recovered program sources and thus reconstruct most of the data on
the tapes.

Figure 9. Screenshot of a BASIC-Program Imported with Errors from a WAV-File. In
the program listing on the right side, incorrect arguments for commands and line
numbers out of order can be found. The log on the left side shows error events that
occurred during the import.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 95

Conclusions
The case study performed in this work proved that it is possible to extract

proprietary data from the analog audio signal stored by a system without previous
knowledge of the format it is stored in. By having access to the original system to
write test programs, we were able to re-engineer the audio waveform, as well as all
data formats, and write a tool to migrate the data to non-obsolete formats. Archives or
libraries that have or may receive audio tapes containing data for the Philips G7400
can use this tool to migrate the digital data without access to the original system or
knowledge of how to handle the system.

This paper also shows that even a system with a very simple architecture,
compared to today’s technical standards, is rather complex. We not only had to
research the physical and logical formats of storing the data, but also the interpretation
of the data formats, and migration to non-obsolete formats had to be considered.

If the actions described in this paper are undertaken today, while the original
systems still work, it is possible to develop tools for the migration of digital objects
now. Once the original systems do not work anymore, it will not be possible to run
code on the original system, thus having to re-engineer the system on a circuit-diagram
level and disassembling the BIOS source code, which makes the task more difficult
and time consuming.

Re-engineering of the System
While digital archaeology and re-engineering systems is seen as a rather complex

task, this case study shows that the re-engineering of the format is easier while having
access to the original system, as this way, test data can be produced. Interpreting the
number format without seeing the effects of the changed numbers on the original
machine would have been a rather difficult task. It should also be noted that non-
commercial ‘retro gaming’ communities still working with the system can be an
excellent source not only for emulation, but also for data archaeology on home
computer systems.

Information Lost Due to Migration
It is not only the information stored in the files which have been migrated which

has to be considered, but also how this information is rendered on the screen, e.g., for
image formats. Thus it is necessary to characterise the potential objects that have to be
migrated and look at their significant properties.

While most of the information that can be stored in files on the Philips Videopac+
G7400 can be migrated to non-obsolete formats, certain restrictions apply:

• Screenshots: The G7400 is able to render blinking information on screen.
By choosing PNG as a non-obsolete (static) format, this dynamic
information of the data is lost. Additionally, it is possible to define custom
characters using the BASIC language. As these are not stored in the
waveform with the screenshot data, a complete program with the definition
of the custom characters would have to be stored and preserved to keep the
information available. To correctly render the characters again on a new
system either the program containing the character definitions has to be

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

96 Migrating Home Computer Audio Waveforms to Digital Objects

analysed and incorporate that information as well when migrating to a new
format or the program has to be executed in an emulated environment to
recreate the original rendering.

• String Arrays: As a string array contains only the addresses of the strings
stored in it and the strings themselves are each stored in separate files, the
interrelation between these files is lost without the logic of the program
that establishes the link between them.

If no adequate non-obsolete format is available to store the information necessary
for the rendering process, alternative preservation approaches like emulation have to
be considered as well.

Evaluated Tapes
Examination of the data on tapes from a private archive showed that the data was

no longer readable on the original machine. Using the migration tool we were able to
retrieve most of the data with small errors. The evaluation also showed that it is
necessary to act now and migrate data that was stored on magnetic tapes 20 years ago,
as the lifetime of magnetic tapes is expected to be a maximum of 20 years (Van
Bogart, 1998). Most of the data retrieved in the experiment could not be extracted
without errors.

Improvement of Migration Results
As shown in the evaluation, not all of the programs stored on the tapes were read

without errors. A corrupted byte does not just change one letter in the command, as
every BASIC command is encoded in one byte, but results in a completely different
command. Automatic correction of the files would thus be possible by checking the
BASIC programs for certain rules, like commands, which allow or enforce a certain
number or types of arguments and point out inconsistencies to an expert doing the
migration. He or she can then correct the results manually. Possible automatic support
could also be offered by showing commands with, for example, a one-bit difference in
the encoded byte.

Media Refresh
Using the developed migration tool, it is possible to refresh the media (audio

cassettes) by reading and decoding the content, recoding it into a waveform and
recording it to the tape again without using the original system.

Using Decoded Data for Emulation
With the possibility to save the data encoded in the waveform as a system-native

binary stream, files can be stored for usage in emulators. Currently no emulators for
the C7420 are available, but by storing the streams in the native format the data is kept
safe for emulation at a future date.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

Mark Guttenbrunner et al. 97

Interpreting Results for Other Media Types
As audio tapes can be read using standard non-proprietary audio equipment,

access to the physical layer of data is not in immediate danger. Other magnetic media,
like floppy discs, cannot be read as easily. Even with floppy drives using the same
media size (8”, 5¼ “, 3½”) access to data written on non-compatible computer systems
is not possible, as the physical parameters of the written data are not necessarily the
same (e.g., number of tracks, block size, even recording technology).

The results of re-engineering the logical data can be used for other media as well.
Re-engineering file formats can either be done using original systems or emulators, if
available. Expert knowledge in handling the system has to be at hand to complete these
tasks.

Acknowledgements
Part of this work was supported by the European Union in the 6th Framework

Program, IST, through the PLANETS project, contract 033789.

References
Baer, R.H. (2005). Videogames: In the beginning. Springfield, NJ: Rolenta Press.

Bardon, C., & de Merly, B. (1984). Jeux sur Philips C7420 Videopac+. Paris:
Edimicro.

Bhushan, B. (1992). Mechanics and reliability of flexible magnetic media. New York:
Springer.

Cattermole, K.W. (1969). Principles of pulse code modulation. London: Iliffe Books.

Forster, W. (2009). The encyclopedia of game machines: Consoles, handhelds and
home computers 1972-2009. Utting, Germany: GAMEplan.

Guttenbrunner, M., Becker, C., & Rauber, A. (2010). Keeping the game alive:
Evaluating strategies for the preservation of console video games.
International Journal of Digital Curation, 1, (5).

Herman, L. (2001). PHOENIX: The fall & rise of videogames - Third Edition.
Springfield, NJ: Rolenta Press.

IEEE. (1987). IEEE Standard 754-1985 for Binary Floating Point Arithmetic (IEEE,
1985). Reprinted in SIGPLAN 22, (2).

Matthews, B., McIlwrath, B., Giaretta, D., and Conway, E. (2008). The significant
properties of software: A study (JISC Study). Retrieved December 11, 2009,
from
http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_r
eport_redacted.pdf.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_report_redacted.pdf
http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_report_redacted.pdf

98 Migrating Home Computer Audio Waveforms to Digital Objects

Petermichl, K. (2009). Handbuch der audiotechnik: Kapitel 12: Dateiformate für
audio. Heidelberg, Germany: Springer Berlin.

Ross, S., & Gow, A. (1999). Digital archaeology: Rescuing neglected and damaged
data resources. A JISC/NPO study within the electronic libraries (eLib)
programme on the preservation of electronic materials. Retrieved December
11, 2009, from http://eprints.erpanet.org/47/.

Van Bogart, J. (1998). Storage media life expectancies. Digital Archive Directions
(DADs) Workshop 1998. Retrieved December 11, 2009, from
http://nssdc.gsfc.nasa.gov/nost/isoas/dads/presentations/VanBogart/.

Webb, C. (2005). Guidelines for the preservation of the digital heritage. Information
Society Division: United Nations Educational, Scientific and Cultural
Organization (UNESCO) – National Library of Australia. Retrieved December
11, 2009, from http://unesdoc.unesco.org/images/0013/001300/130071e.pdf.

The International Journal of Digital Curation
Issue 1, Volume 6 | 2011

http://eprints.erpanet.org/47/
http://unesdoc.unesco.org/images/0013/001300/130071e.pdf

	Abstract
	Introduction
	Related work
	Original System
	The Philips Videopac+ G7400 Video Game Console System
	The Philips C7420 Home Computer Module

	Re-Engineering the Waveform
	Re-Engineering File Formats
	Basic Program
	Screenshot
	Formatting
	Foreground and Background Colours
	Double Width and Height
	Blink and Reverse
	Array
	String Array
	Number Array
	String
	Memory Dump

	Converting Waveform to Bit-Stream
	Migration Tool
	Evaluation
	Conclusions
	Re-engineering of the System
	Information Lost Due to Migration
	Evaluated Tapes
	Improvement of Migration Results
	Media Refresh
	Using Decoded Data for Emulation
	Interpreting Results for Other Media Types

	Acknowledgements
	References

