
172 An Emergent Micro-Services Approach to Digital Curation Infrastructure

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation
Infrastructure

Stephen Abrams, John Kunze, David Loy,
California Digital Library,

University of California

 Abstract
In order better to meet the needs of its diverse University of California (UC) constituencies, the
California Digital Library UC Curation Center is re-envisioning its approach to digital curation
infrastructure by devolving function into a set of granular, independent, but interoperable micro-
services. Since each of these services is small and self-contained, they are more easily developed,
deployed, maintained, and enhanced; at the same time, complex curation function can emerge from
the strategic combination of atomistic services. The emergent approach emphasizes the persistence
of content rather than the systems in which that content is managemed, thus the paradigmatic
archival culture is not unduly coupled to any particular technological context. This results in a
curation environment that is comprehensive in scope, yet flexible with regard to local policies and
practices and sustainable despite the inevitability of disruptive change in technology and user
expectation.1

1 This article is based on the paper given by the authors at iPRES 2009; received November 2009,
published June 2010.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

An Emergent Micro-Services Approach to Digital Curation Infrastructure 173

Introduction
Information technology and resources have become both integral and

indispensable to the pedagogic mission of the University of California (UC). Members
of the UC community routinely produce and utilize a wide variety of digital assets in
the course of teaching, learning, and research. These assets represent the intellectual
capital of the University; they have inherent enduring value and need to be managed
carefully to ensure that they will remain available for use by future scholars. Within
the UC system the California Digital Library (CDL) UC Curation Center (UC3) has a
broad mandate to ensure the long-term usability of the University’s digital assets.

UC3 increasingly sees its mission in terms of digital curation, the set of policies
and practices focused on maintaining and adding value to a body of trusted digital
content for use now and into the indefinite future (Abbott, 2008). Traditionally,
preservation and access have been considered disparate activities. Properly, however,
they should be seen as complementary functions: preservation focused on ensuring use
over time, while use depends upon preservation up to a point in time (Rusbridge,
2008). Curation is thus an ongoing process of management and enrichment at all stages
of the lifecycle of a digital asset (Higgins, 2008). While curation is not solely a
technical undertaking – curation success is, for example, highly dependent on
important human competencies, analysis, and decision making – a robust infrastructure
in which to manage valuable digital content efficiently and effectively is nevertheless a
necessary foundation.

Curation Infrastructure
As a central system-wide service provider to the 10 UC campuses, UC3 is

continually asked to assume stewardship responsibility for digital content in ever
increasing number, size, and diversity of type. Furthermore, this content is often used
and repurposed in novel contexts. Thus, the programmatic imperative of UC3 is to
provide a curation environment that is comprehensive in scope, yet flexible with
regard to local policies and practices, the inevitability of disruptive change in
technology and user expectation, and the realization that curation over archival time-
spans is a relay (Janée, Frew, & Moore, 2008).

To achieve this goal, UC3 believes it is necessary to deprecate the centrality of the
curation repository as place (Abrams, Cruse, & Kunze, 2008). The new UC3 approach
to digital curation infrastructure is based on the idea of devolving necessary function
into a set of independent, but interoperable, micro-services that embody curation
values and strategies. Since each of the services is small, they are collectively easier to
develop, deploy, maintain, and enhance (Denning, Gunderson, & Hayes-Roth, 2008).
Equally as important, since the level of investment in and commitment to any given
service is small, they are more easily replaced when they have outlived their
usefulness. Although the individual services are narrowly scoped, the complex
function needed for effective curation emerges from the strategic combination of
atomistic services (Fisher, 2006).

Micro-services can be deployed in the contexts in which it makes most sense, both
technically and administratively. While UC3 will use the micro-services as the basis
for its ongoing centrally-managed curation activities, these services can also be

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

174 Stephen Abrams et al.

usefully deployed and operated in local campus IT, research group, and departmental
environments. It is no longer necessary that digital content must be transferred to a
common repository in order to receive appropriate curation.

Curation Micro-Services
The UC3 curation micro-services are intended to achieve the following strategic

goals reflective of evolving community best practice:
• Providing safety through redundancy (embodying the principle that “lots of

copies keeps stuff safe”; (Reich & Rosenthal, 2001)).
• Maintaining meaning through description (“Lots of description keeps stuff

meaningful”).
• Facilitating utility through service (“Lots of services keeps stuff useful”).
• Adding value through use (“Lots of uses keeps stuff valuable”).

In consequence, the overall infrastructural framework is conceived in terms of an
initial set of 12 micro-services arranged in four hierarchical service layers, each
building upon the necessary foundational function of lower layers, and approaching
curation sufficiency in the aggregate (see Table 1). Although the micro-services are
assigned a mode and focus for purposes of classification, in actuality the services have
broad applicability throughout the full curation lifecycle (see Figure 1).

Mode Focus Layer / micro-service

Curation

Value
Interoperation

• Annotation
• Notification

Service

Application
• Transformation
• Search
• Index
• Ingest

Preservation

Context
Interpretation

• Characterization
• Inventory

State

Protection
• Replication
• Fixity
• Storage
• Identity

Table 1. Curation micro-services.

The Protection layer Identity and Storage services are foundational to the entire
micro-services framework. The Identity service provides a means by which to
persistently and unambiguously distinguish and reference a given unit of curated
content. The Storage service provides a secure environment for the persistent
management of that content. The Fixity service provides the means to detect damage to
the bit-level integrity of managed content, and the Replication service manages the
synchronization of content replicas.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 175

Note that the four components of the Protection layer operate on content state
without any understanding of what that content represents. The contextual meaning of
curated content is managed by the higher-level Interpretation layer. The Inventory
service maintains a comprehensive, schema-agnostic metadata catalog for the content
managed in the Protection layer. The Characterization service provides an automated
means to examine and extract the properties of formatted byte streams underlying
managed content that are significant for purposes of curation and preservation analysis,
planning, and intervention (Abrams, Morrissey, & Cramer, 2008).

Discover /
Use / Reuse Transform Create /

Receive
Appraise /

Select Ingest Describe Store Monitor

Transformation
(derivative)

Identity
(resolve)

FixityIdentity
(bind)

Identity
(mint)

Notification

Annotation

Search
StorageInventory

Transformation
(canonicalize)

Characterization

Inventory

Index
Annotation

Curate Preserve

Replication

Figure 1. Micro-service lifecycle applicability (adapted from Higgins, 2008).

The Protection and Interpretation layers collectively operate in a back-office
preservation mode that would typically be managed directly by repository managers
(e.g., UC3 staff). User-facing curation services are provided by the upper two service
layers. The Application layer supports base-line functions for both producer and
consumer users. The Ingest service provides the means whereby new content is
accessioned into the curation environment, with interfaces geared for both manual and
automated workflows. The Index and Search services support content and metadata-
based search, browse, and retrieval. The Transformation service provides the means to
transcode content into desired forms for purposes of ingest canonicalization,
preservation migration, and the creation of delivery derivatives.

The upper Interoperation layer supports services for adding value to curated
content through consumer-driven use and enrichment. The Notification service
provides the means to notify user communities of the availability of newly acquired
content. The Annotation service provides the means by which both content curators
and consumers can describe the significant properties of content managed in the micro-
services infrastructure.

Design Principles
Design of individual curation micro-services is based on the following principles:

• Granularity and orthogonality.
• Complexity through composition rather than addition.
• Persistent interfaces, evolving implementations.
• Flexible configuration, but meaningful deault behavior (the “principle of

least surprise”).
• Deferring implementation decision-making until needs and outcomes are

clearly understood.

As mentioned previously, complexity is an emergent property of the micro-
services approach. In other words, sophisticated curation function arises through the
flexible composition of individual, atomistic services rather than through the addition

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

176 Stephen Abrams et al.

of function to an increasingly large monolithic system. The continual expansion of the
scope of monolithic systems does increase functionality, but at the cost of complexity
that complicates development, inhibits maintenance, and increases the likelihood of
errant behavior. The UC3 preference is for an aggressive devolution of curation
function into simple, focused, independent, but interoperable micro-services.

Micro-services expose their function through well-defined interfaces that define
their public service contract (Liegl, 2007; O’Reilly, 2005). Assertions regarding the
persistence and sustainability of UC3 curation function are made relative to these
interfaces and not their underlying implementations, which can and shall evolve freely
over time without invalidating higher-level interface contracts. Interface design is
based on the major conceptual entities underlying a given service, which are defined in
terms of state properties and behaviors that can access and manipulate that state.
Individual state properties are strongly typed and are assigned unique formal
identifiers, guaranteed unique within the appropriate scoping unit, so that entity state
definitions can be publicly exposed as reusable ontologies.

Abstract interfaces are mapped to three interactive modalities: procedural APIs in
various language bindings; command line APIs supported by major operating system
command shells; and web APIs conforming to the REST paradigm (Fielding & Taylor,
2002) and incorporating thin client GUIs supported in major browsers (see Figure 2).
The intention is to provide content managers and curators with the means to interact
with the services without entailing significant changes to established workflows and
patterns.

Producer /
consumer

TCP/IP

Abstract service interfaces

Content

Unstructured Structured

 Description

Computational cloud

Storage cloud

Service “contract”

Identity Storage Ingest Catalog

Curation micro-services

Protocol bindings

Command shell bindings

Network interface

Procedural interface

Service implementation

Fabric “contract”Virtualization interface

Language bindings

Command line interface

Figure 2. Micro-service stack.

The initial language bindings for the micro-service procedural APIs are Java and
Perl. Java RESTful APIs are built with the Jersey framework, the reference
implementation of JSR 311, JAX-RS – Java API for RESTful Web Services, running in

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 177

a Jetty or Tomcat container. The Perl and Java implementations emphasize thin
command-line tools that expose as much functionality as feasible to the shell user, but
that themselves add minimal functionality to what is already provided by the language-
based methods; in this way, maximal function is pushed into the lowest level where it
is available in all three modalities.

As an example of these design principles, the Storage service is described in some
detail in the following section. As the micro-services are works-in-progress, the
apparatus described below does not include some of their more speculative
components.

Storage Service
The Storage service manages unstructured storage (i.e., with no common data

model) of files holding the digital representations of content. (Structured storage is
provided by the Inventory service.) By design the Storage service is opaque with
respect to the underlying semantics of stored content, which is managed by the higher-
level Inventory service. Consequently, the Storage service has a weak definition of a
digital object, which is simply a set of related files descending from a single directory
whose state can be modified over time through a sequence of discrete versions. By
policy, UC3 strengthens this with the requirement that the directory hierarchy contain
every non-derivative file related to the digital object.

Conceptual Modeling.
The Storage service is based on five conceptual entities, each defined in terms of

its state properties and state manipulating behaviors.

• Service. The Storage service itself. The Storage service acts as a central
broker to a number of defined storage nodes, which can be defined for
administrative or technical convenience. Global service state includes:

o Service name, identifier, and version.
o Enumeration of storage nodes.
o Number of objects, versions, and files.
o Total size.
o Access and support URIs.

The service encompasses an arbitrary number of storage nodes.

• Node. An entity responsible for managing a subset of content known to the
service. Nodes are typically defined on the basis of their underlying
storage technology or policy regime. Node state includes:

o Node name, identifier, and version
o Number of objects, versions, and files.
o Total size.
o Storage media: mangetic-disk, magnetic-tape, optical-disk, solid-

state.
o Access modality: on-line, near-line, off-line.
o Access and support URIs.

A storage node encompasses an arbitrary number of digital objects.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

178 Stephen Abrams et al.

• Object. A set of versioned files representing an intellectually coherent unit
of content. Object state includes:

o Object identifier.
o Enumeration of versions.
o Number of versions and files.
o Total size.
o Creation, modification, last verification, and last access

date/’timestamps.
o Access URI.

An object encompasses an arbitrary number of versions.

• Version. A set of files representing the discrete state of a digital object at a
point in time. Version state includes:

o Version identifier.
o Number of files.
o Total size.
o Creation, modification, last verification, and last access

date/timestamps.
o Access URI.

Version identifiers are assigned in numerical sequence, starting with 1.
The reserved version number 0 references no fixed version, but is set aside
as an access synonym that always represents the current version. A version
encompasses an arbitrary number of files.

• File. A named digital octet stream. Note that a file octet stream is named,
but not typed; the Storage service is not concerned with the meaning of the
abstract content expressed as a digital object. File state includes:

o File identifier.
o Size.
o Creation, modification, last verification, and last access

date/timestamp.
o Access URI.

Methods.
The Storage service supports a number of methods for accessing and manipulating

the conceptual entities and their state. Each method is classified according to the
important transactional properties of idempotency and safety (Fielding et al., 1999).

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 179

• Help [idempotent, safe]
• Get-service-state [idempotent, safe]
• Get-node-state [idempotent, safe]
• Get-object [idempotent, unsafe]
• Get-object-state [idempotent, safe]
• Get-version [idempotent, unsafe]
• Get-version-state [idempotent, safe]
• Get-file [idempotent, unsafe]
• Get-file-state [idempotent, safe]
• Add-version [non-idempotent, unsafe]
• Delete-object [idempotent, unsafe]
• Delete-version [idempotent, unsafe]

The Help method is common to all micro-services and provides a brief descriptive
text, an enumeration of all supported methods, and a support contact URI. The Get-
object, Get-version, and Get-file methods are trivially unsafe since they modify their
respective states with a current access timestamp. Note that the only mechanism for
modifying an object’s content is to introduce a new version. The Delete-object and
Delete-version methods are defined for completeness, but as a matter of policy are
intended for use only in response to unusual curatorial circumstances.

Each method is first defined abstractly and then mapped to specific protocols. For
example, the Get-file-state method definition is summarized in Table 2. This abstract
method definition is mapped to the concrete syntax specified by the web, command
line, and procedural APIs, as shown, for example in Figure 3. All implementation
details are hidden behind the interface, which constitutes the public service contract.
The supported response forms for which state information can be requested are ANVL
(Kunze, Kahle, Masanes, & Mohr, 2005), HTML, JSON, RDF/Turtle, and XML.

Parameter Type Obligation Description
Node Identifier Mandatory Storage node
Object Identifier Mandatory Object identifier
Version Identifier Mandatory Version identifier
File Identifier Mandatory File identifier
Form Enum Optional Response form
RETURN State Mandatory File state
SIDE EFFECTS Not applicable

ERRORS

Badly formed request
Node not found
Object not found
Version not found
File not found
Unsupported response form

Table 2. Get-file-state method.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

180 Stephen Abrams et al.

Get /fileState/node/object/version/file HTTP/1.1
Accept: application/json

% store getFileState node object version file –f json

File.getState(node, object, version, file, Form.JSON);

Figure 3. Get-file-state method syntax.

Implementation.
The general micro-services principles of granularity and orthogonality are applied

throughout the implementation process. Consequently the Storage service relies on a
number of subsidiary specifications, conventions, and systems (described in more
detail at <http://www.cdlib.org/inside/diglib/>).

The Storage service is instantiated in a file system as shown in Figure 4. The file
of the form “0=name_version” is a Namaste tag (Name-as-text), that functions as an
indicative signature of the Storage service home directory; in this case it specifies that
this instantiation conforms to version 0.8 of the service specification. The “admin/”
directory holds various administrative declarations and the “log/” directory holds
access and diagnostic logs. The global state properties of the service are defined by the
file “store-info.txt” (see Figure 5).

The storage nodes known to the service are defined by name and access URI in
the file “nodes.txt” (see Figure 6). Nodes can be remote or local to the host running the
Storage service. Local interoperability assumes that the storage node is instantiated in
a file system mountable by the local host; remote nodes are accessed over a TCP/IP
network through their access URIs.

store_home/
 0=store_0.7
 admin/
 log/
 nodes.txt
 store-info.txt

Figure 4. Storage service file system structure.

Name: store
Service-scheme: Store/0.7
Node-scheme: CAN/0.8
Verify-on-read: true
Verify-on-write: true
Access-uri: http://store.cdlib.org/
Support-uri: email:store-support@cdlib.org

Figure 5. Storage file properties file.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 181

can01 http://can01.cdlib.org/
can02 http://can02.cdlib.org/
can03 file:///home/can03

Figure 6. Storage nodes file.

The default implementation for a storage node is a Content Access Node (CAN,
see Figures 7 and 8), which is essentially a repository instance. A CAN manages its
objects in a hierarchical file system tree. The primary convention for the structure of
the branches of the tree is Pairtree, which uses a bigram decomposition of an object’s
identifier to determine the directory hierarchy at which the object’s content is found.
Thus, an object with identifier “abc123” would be found at the end of the relative
directory path “ab/c1/23”. (Pairtree defines escaping rules to prevent collision between
identifier characters and file system semantics.) Consistent with the principle of micro-
service independence, Pairtree has been adopted by a number of external institutions
and initiatives. For example, it is being used by HathiTrust (York, 2009) to store
millions of scanned books. Open source Perl code supporting Pairtree, Namaste, and
ANVL are available (Kunze, 2009).

can_home/
 0=can_0.8
 admin/
 can-info.txt
 log/
 store/
 pairtree_root/
 0=pairtree_0.1
 pairtree-info.txt
 ab/
 c1/
 23/
 abcd123/

Figure 7. CAN file system structure.

The leaf at the end of a Pairtree path stores the digital object, but its nature is not
specified by Pairtree. For example, it could be a Bagit bag (Boyko, Kunze, Littman,
Madden, & Vargas, 2009), a HathiTrust digitized book, or a web crawl. In the context
of a CAN, the convention controlling the structure of that object is Dflat.

Name: can01
Node-scheme: CAN/0.8
Branch-scheme: Pairtree/0.1
Leaf-scheme: Dflat/0.16
Media-type: magnetic-disk
Access-mode: on-line
Verify-on-read: true
Verify-on-write: true
Access-uri: http://can01.cdlib.org/

Figure 8. CAN properties file.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

182 Stephen Abrams et al.

Dflat defines structures for managing versioned sets of files that represent a digital
object (see Figures 9 and 10). Object versions are stored in numbered directories of the
form “vnnn/”. (Directory names corresponding to versions numbered up to 999 are
left-padded to align lexical and numeric ordering; names above 999 naturally extend
an additional digit per order of magnitude.) The symbolic link “current@” provides
direct access to the current version.

dflat_home/
 0=dflat_0.16
 admin/
 current@
 dflat-info.txt
 log/
 v001/
 v002/
 V003/

Figure 9. Dflat file system structure.

Object-scheme: Dflat/0.16
Manifest-scheme: Checkm/0.1
Full-scheme: Dnatural/0.12
Delta-scheme: ReDD/0.1
Current-scheme: symlink

Figure 10. Dflat properties file.

A CAN is a container for everything that might belong in a repository instance.
While its specification is still evolving, it bundles the premises that a CAN repository
collection is represented by one or more Pairtrees and that the leaves of each Pairtree
are Dflats. Consistent with stated design principles, some implementation decision-
making has been deferred until needs are more clearly understood; currently absent are
ways to represent policies governing such things as frequency of fixity checking,
remote replication sites, admissibility of annotations, etc.

A Dflat version can be represented in fully-instantiated or delta-compressed form.
The current version is always fully instantiated; all previous versions are generally
kept in delta-compressed form to minimize storage utilization. Regardless of
representation type, all version directories hold a manifest file (“manifest.txt”)
conforming to the Checkm specification, which associates a size and message digest
with each version file.

The structure of a fully-instantiated version representation is defined by the
subsidiary Dnatural convention (see Figure 11). The content data and metadata
received from an object’s producer or curator are stored in the “data/” and “metadata/”
directories, respectively. The content of the “data/” directory is completely up to the
producer or curator (e.g., it could be a BagIt bag). The “enrichment/” directory holds
additional metadata and derivative content automatically generated by the Storage
service itself. The “annotation/” directory holds additional metadata and derivative
content supplied by content consumers.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 183

v003/
 0=dnatural_0.12
 admin/
 annotation/
 data/
 enrichment/
 manifest.txt
 metadata/

Figure 11. Dnatural file system structure.

Compressed version representations conform to the Reverse Directory Delta
(ReDD) convention (see Figure 12). ReDD is a very simple tool- and platform-
independent scheme that uses file-level reverse deltas to minimize overall storage
utilization. The “add/” directory holds the files that need to be added relative to the
subsequent version in order to re-instantiate the previous version; the “delete.txt” file
lists the files that need to be deleted relative to the subsequent version to re-instantiate
the previous version. In other words, the delta information associated with version 2
indicates how to manipulate the files of version 3 in order to recover the complete
form of version 2. Access is thus faster for later versions; the re-instantiation of a
version early in the chronological sequence will require the iterative application of
deltas. Dflat maintains an ordered sequence of versions, and can be applied to any
differencing scheme (e.g., Unix “diff”) that operates on the notions of current and
previous version.

v002/
 0=redd_0.1
 d-manifest.txt
 delta/
 add/
 delete.txt
 manifest.txt

Figure 12. ReDD file system structure.

All of the conventions and subsystems underlying the Storage service are
supported by procedural APIs in separate package spaces, so they can easily be
repurposed in other contexts. The reliance on the file system as the paradigmatic
storage abstraction is justified by the design and behavioral characteristics of modern
file systems such as ZFS (Bonwick & Moore, 2007), which exhibits essentially
constant time read and write performance independent of total number or size of files
(Abrams, Cruse, Kunze, & Loy, 2009). The Storage service as deployed by UC3
policy will serve as the copy of record for all information known about a unit of digital
content. While a subset of this information will be managed in structured form by the
Inventory service, this is considered to be a duplicative, rather than authoritative copy,
for purposes of optimizing routine administrative and curatorial queries. If necessary,
the Inventory service can be fully re-instantiated through an exhaustive traversal of
various Storage service file system structures.

All of the micro-service implementations are designed to be fully self-contained
and easily deployed and operated with minimal human intervention. While UC3 will
continue to provide a centrally-managed curation repository, the intention of the
micro-services approach is to facilitate the distribution of efficient and effective

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

184 Stephen Abrams et al.

curation function to new constituencies and contexts, including campus data centers,
academic departments, laboratory and field station computing clusters, and scholars’
desktops.

Development Process
Establishing the UC3 micro-services infrastructure draws from both traditional

and agile development principles:
• An engaged user community driving needs assessment and functional

requirements
• Early prototyping with frequent refactoring.
• Continuous build and test.
• Documentation as a co-deliverable, not an afterthought.
• A small group of early adopters.

The 12 micro-services are being implemented in a sequence of six developmental
waves (see Table 3). The second, fourth, and sixth wave represent significant
deliverable milestones, corresponding to a minimally, moderately, and fully functional
curation repository, respectively.

First wave Second wave Third wave
Fourth wave
 Fifth wave Sixth wave

Identity Inventory Index Search Notification Annotation
Storage Ingest Fixity Replication Characterization Transformation

Object / collection modeling Authentication / authorization
Policy and business model development

Table 3. Micro-services developmental waves.

The first through third waves are accompanied by the concomitant development
of standards and conventions for modeling digital objects and object collections. The
fourth through sixth waves will be accompanied by the development of common
authentication and authorization mechanisms. All six waves will be accompanied by
policy and business modeling.

The Identity and Storage services are currently available in working form; the
second wave milestone deliverables will be ready to accept content in January 2010.
The initial content will be provided by a multi-campus pilot project on the curation of
electronic theses and dissertations. Subsequent content projects will involve
anthropological and zoological museum collections, environmental field data, and
biological type specimens.

Conclusion
In order to facilitate the application of UC Curation Center service offerings to

new campus constituencies, and the increasing number, size, and type diversity of
digital content, the underlying curation infrastructure must be easily adaptable to local
needs and practices. An architectural approach in which curation function is embodied
in a set of granular and orthogonal micro-services best provides the necessary
deployment flexibility, while also simplifying development and maintenance effort.
Service interoperability is facilitated by strict conformance to the behavioral semantics
of well-defined public interfaces. This permits comprehensive curation function to
emerge from the strategic combination of individual atomistic services.

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

An Emergent Micro-Services Approach to Digital Curation Infrastructure 185

References
Abbott, D. (2008). What is digital curation? Retrieved September 7, 2009, from

http://www.dcc.ac.uk/resource/briefing-papers/what-is-digital-curation/

Abrams, S., Cruse, P., & Kunze, J. (2008). Preservation is not a place. International
Journal of Digital Curation, 4(1), 8-21. Retrieved September 7, 2009, from
http://www.ijdc.net/index.php/ijdc/article/view/98/73

Abrams, S., Cruse, P., Kunze, J., & Loy, D. (2009). “Where are we from? Where are
we going?”: Permanent objects, disposable systems. 4th International
Conference on Open Repositories, Atlanta, May 27-29, 2009.

Abrams, S., Morrissey, S., & Cramer, T. (2008). “What? So what?”: The next-
generation JHOVE2 architecture for format-aware characterization. Fifth
International Conference on Preservation of Digital Objects, London,
September 29-30, 2008.

Bonwick, J., & Moore, B. (2007). ZFS: The last word in file systems. Retrieved
September 7, 2009, from
http://www.opensolaris.org/community/zfs

Boyko, A., Kunze, J., Littman, J., Madden, L., & Vargas, B. (2009). The BagIt File
Packaging Format. Retrieved September 7, 2009, from
http://www.cdlib.org/inside/diglib/bagit/bagitspec.html

Denning, P. J., Gunderson, C., & Hayes-Roth, R. (2008). Evolutionary system
development. Communications of the ACM, 51(17), 29-31.

Fielding, R., Gettys, J., Mogul, J., Frystuk, H., Masinter, L., Leach, P., & Berners-Lee,
T. (1999). Hypertext Transfer Protocol – HTTP/1.1, RFC 2616. Retrieved
September 7, 2009, from http://www.ietf.org/rfc/rfc2616.txt

Fielding, R., & Taylor, R. (2002). Principled design of the modern web architecture.
ACM Transactions on Internet Technology, 2(2), 115-150.

Fisher, D. A. (2006). An emergent perspective on interoperation in systems of systems.
Technical Report, CMU/SEI-2006-TR-003, ESC-TR-2006-003, Carnegie-
Mellon University. Retrieved September 7, 2009, from
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr003.pdf

Higgins, S. (2008). The DCC curation lifecycle model. International Journal of
Digital Curation, 3(1), 134-140. Retrieved September 7, 2009, from
http://www.ijdc.net/index.php/ijdc/article/view/69/48

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.ijdc.net/index.php/ijdc/article/view/69/48
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr003.pdf
http://www.ietf.org/rfc/rfc2616.txt
http://www.cdlib.org/inside/diglib/bagit/bagitspec.html
http://www.opensolaris.org/community/zfs
http://www.ijdc.net/index.php/ijdc/article/view/98/73
http://www.dcc.ac.uk/resource/briefing-papers/what-is-digital-curation/

186 Stephen Abrams et al.

Janée, G., Frew, J., & Moore, T. (2008). Relay-supporting archives: Requirements and
progress. International Journal of Digital Curation 4(1), 57-70. Retrieved
September 7, 2009, from
http://www.ijdc.net/index.php/ijdc/article/view/102/77

Kunze, J. (2009). Software modules, command-line scripts, test suites, and
documentation supporting Pairtree, Namaste tags, and ANVL. Comprehensive
Perl Archive Network. Retrieved September 7, 2009, from
http://search.cpan.org/~jak

Kunze, J., Kahle, B., Masanes, J., & Mohr, G. (2005). A Name-Value Language
(ANVL). Retrieved September 7, 2009, from
http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf

Liegl, P. (2007). The strategic impact of service oriented architectures. 14th Annual
IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems, Tucson, Arizona, March 26-29, 2007.

O’Reilly, T. (2005). Web 2.0: Design patterns and business models for the next
generation of software. Retrieved September 7, 2009, from
http://oreilly.com/web2/archive/what-is-web-20.html

Reich, V., & Rosenthal, D. S. H. (2001, June). LOCKSS: A permanent web publishing
and access system. D-Lib Magazine, 7(6). Retrieved September 7, 2009, from
http://www.dlib.org/dlib/june01/reich/06reich.html

Rusbridge, C. (2008, July 29). Re: “Digital preservation” term considered harmful?
[Web log message from Digital Curation Blog]. Retrieved September 7, 2009,
from
http://digitalcuration.blogspot.com/2008/07/digital-preservation-term-
considered.html

York, J. (2009). This library never forgets: Preservation, cooperation, and the making
of HathiTrust digital library. In Archiving 2009 Final Program and
Proceedings. Retrieved September 7, 2009, from
http://www.hathitrust.org/documents/This-Library-Never-Forgets.pdf

The International Journal of Digital Curation
Issue 1, Volume 5 | 2010

http://www.hathitrust.org/documents/This-Library-Never-Forgets.pdf
http://digitalcuration.blogspot.com/2008/07/digital-preservation-term-considered.html
http://digitalcuration.blogspot.com/2008/07/digital-preservation-term-considered.html
http://www.dlib.org/dlib/june01/reich/06reich.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf
http://search.cpan.org/~jak
http://www.ijdc.net/index.php/ijdc/article/view/102/77

	 Abstract
	Introduction
	Curation Infrastructure
	Curation Micro-Services
	Design Principles
	Storage Service
	Conceptual Modeling.
	Methods.
	Implementation.

	Development Process
	Conclusion
	References

