LJDC | General Article

YesWorkflow: A User-Oriented, Language-Independent Tool
for Recovering Workflow Information from Scripts

Timothy McPhillips', Tianhong Song?, Tyler Kolisnik?, Steve Aulenbach*, Khalid Belhajjame?,
R. Kyle Bocinsky®, Yang Cao', James Cheney'?, Fernando Chirigati’, Saumen Dey?, Juliana
Freire’, Christopher J ones®, James Hanken'®, Keith W. Kintigh”, Timothy A. Kohler®!8, David
K00p9, James A. Macklin!®, Paolo Missier'?, Mark Schildhauer®, Christopher Schwalm!!,
Yaxing Wei'2, Mark Bieda®, Bertram Ludischer!-'*

!Graduate School for Library and Information Science (GSLIS), University of Illinois at Urbana-Champaign (UTUC);
2Depa\rtment of Computer Science, University of California, Davis; 3Department of Biochemistry and Molecular
Biology, University of Calgary; 4University Corporation for Atmospheric Research (UCAR) and U.S. Global
Change Research Program (USGCRP); >Paris Dauphine University, LAMSADE; ®Department of Anthropology,
Washington State University, Pullman; "New York University; 8University of California, Santa Barbara; ®University
of Massachusetts, Dartmouth; 10University of Newcastle, UK; HNorthern Arizona University; 1204k Ridge National
Laboratory; 13University of Edinburgh; 4National Center for Advanced Supercomputing Applications (NCSA), UIUC;
15 Agriculture and Agri-Food Canada; 16Museum for Comparative Zoology, Harvard; 17S¢hool of Human Evolution &
Social Change, Arizona State University, Tempe; 185anta Fe Institute.

Abstract

Scientific workflow management systems offer features for composing complex com-
putational pipelines from modular building blocks, executing the resulting automated
workflows, and recording the provenance of data products resulting from workflow runs.
Despite the advantages such features provide, many automated workflows continue to be
implemented and executed outside of scientific workflow systems due to the convenience
and familiarity of scripting languages (such as Perl, Python, R, and MATLAB), and to the
high productivity many scientists experience when using these languages. YesWorkflow
is a set of software tools that aim to provide such users of scripting languages with many
of the benefits of scientific workflow systems. YesWorkflow requires neither the use of a
workflow engine nor the overhead of adapting code to run effectively in such a system.
Instead, YesWorkflow enables scientists to annotate existing scripts with special comments
that reveal the computational modules and dataflows otherwise implicit in these scripts.
YesWorkflow tools extract and analyze these comments, represent the scripts in terms of
entities based on the typical scientific workflow model, and provide graphical renderings
of this workflow-like view of the scripts. Future version of YesWorkflow will also allow
the prospective provenance of the data products of these scripts to be queried in ways
similar to those available to users of scientific workflow systems.

Submitted 20 January 2015 | Revision received 2 March 2015 | Accepted 2 March 2015

Correspondence should be addressed to Timothy McPhillips, Graduate School for Library and Information Sci-
ence (GSLIS), University of Illinois at Urbana-Champaign (UIUC), email: tmcphillips@absoluteflow.org; or Ber-
tram Ludéscher, GSLIS & National Center for Advanced Supercomputing Applications (NCSA), UIUC, email:
ludaesch@illinois.edu

An earlier version of this paper was presented at the 10th International Digital Curation Conference.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated

to the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of
Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution 4.0
International Licence. For details please see http://creativecommons.org/licenses/by/4.0/ BY

International Journal of Digital Curation 208 http://dx.doi.org/10.2218/ijdc.v10i1.370
2015, Vol. 10, Iss. 1, 298-313. DOI: 10.2218/ijdc.v10i1.370

mailto:tmcphillips@absoluteflow.org
mailto:ludaesch@illinois.edu
http://www.ijdc.net/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.2218/ijdc.v10i1.370

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 299

1 Introduction

Many scientists use scripts (written in Python, R, or MATLAB, for example) or
scientific workflow environments for data processing, analysis, model simulation, result
visualization, and other scientific computing tasks. In addition to the widespread use in
the natural sciences, computational automation tools are also increasingly used in other
domains; for example, for data mining workflows in the digital humanities (Van Zundert,
2012), or to implement data curation workflows for natural history collections (Dou et
al., 2012). One advantage of using scientific workflow systems (e.g., Galaxy [Goecks,
Nekrutenko & Taylor, 2010], Kepler [Ludischer et al., 2006], Taverna [Oinn et al.,
2004], VisTrails [Bavoil et al., 2005], RestFlow! [Tsai et al., 2013]) is that they often
include capabilities to track data as it is being processed. By capturing and subsequently
sharing such provenance information, scientists can provide a detailed account of how
their results were derived from the given inputs via intermediate results, workflow steps,
and parameter settings, thereby facilitating transparency and reproducibility of workflow
products (Stodden, Leisch & Peng, 2014). In addition to this external use, provenance
information can also be used internally; for example, to allow scientists to trace sources
of errors and to debug their workflows.

The data provenance captured by workflow environments is sometimes called
retrospective provenance to distinguish it from another form called prospective provenance
(Clifford, Foster, Voeckler, Wilde & Zhao, 2008; Lim, Lu, Chebotko & Fotouhi, 2010).
The former consists of data dependencies and lineage information recorded at runtime,
which can then be used later for retrospective exploration and analysis (also known as
“querying provenance” [Davidson & Freire, 2008]). In contrast, prospective provenance
is a description of the computational process itself; that is, the workflow specification
is considered a form of provenance information, describing the method by which
analysis results and other data products are obtained. Scientific workflow systems
therefore naturally support both forms of provenance: prospective provenance by visually
presenting a workflow as a directed graph with data and process steps, and retrospective
provenance by capturing and subsequently exporting runtime provenance.

Despite these and other advanced features of workflow systems, a vast number of
computational workflows continue to be developed using general purpose or specialized
scripting languages such as Python, R, and MATLAB. This is true in particular for
the “long tail of science” (Wallis, Rolando & Borgman, 2013; Heidorn, 2008), where
advanced features such as provenance support are rarely available. At the time of
writing, for example, provenance libraries for R have only recently been announced
(Lerner & Boose, 2014), while for Python a new tool called noWorkflow has just been
developed (Murta, Braganholo, Chirigati, Koop & Freire, 2014). The noWorkflow (rot
only workflow) system uses Python runtime profiling functions to generate provenance
traces that reflect the processing history of the script. Thus, noWorkflow gives users the
advantage of automatically captured retrospective provenance information in a manner
similar to workflow systems, but allows them to continue working in their familiar Python
scripting environment without adopting a new system.

In the following, we describe a new tool called YesWorkflow that complements

I RestFlow wiki: http://restflow.org/

LIDC | General Article

http://restflow.org/

300 | YesWorkflow doi:10.2218/ijdc.v10i1.370

noWorkflow by revealing prospective provenance in scripts; that is, YesWorkflow makes
latent workflow information from scripts explicit. In particular, dataflow dependencies
that are often “hidden” inside a script and not easily understood by outsiders are extracted
from simple user annotations; they can then be exported and visualized in graph form.
The main features of YesWorkflow, abbreviated here to YW, are as follows:

* YW exposes prospective provenance (workflow structure and dataflow dependencies)
from scripts based on simple user annotations.

* YW annotations are embedded inside of comments, so they are language independent
and can be used for example in Python, R, and MATLAB.

* YW annotations and the underlying model are deliberately kept simple to allow
scientists a very low entry bar for adoption.

* The YW toolkit is a grass-roots, agile, open source effort, whose simple and
modular architecture and underlying UNIX philosophy facilitates interoperability
and extensibility.

* The current YW prototype generates different, easily reusable output formats,
including three different views of the extracted workflow graph in Graphviz/DOT
form: process-centric, data-centric, and combined.

We discuss YW limitations and plans for future development in Section 7.

2 YesWorkflow Model and Annotation Syntax

In order to use YesWorkflow a script author marks up scripts using a simple keyword-
based annotation or tagging mechanism, embedded within the comments of the host
language. YW annotations are expressions of the form @tag value: @tag is one of
the recognized YW keywords, after which a value follows, separated by one or more
whitespace characters. Thus, the YW annotation syntax mimics the syntax of conventional
documentation generators such as Javadoc and Doxygen.

The YW tool then interprets the embedded, structured comments and builds a simple
workflow model of the script. This model represents scripts in terms of scientific workflow
entities: programs, workflows, ports, and channels.

* A program block (abbreviated to program or block) represents a computational step
in the script that receives input data and produces (intermediate or final) output
data. A program is designated in a script by bracketing the relevant code between
a pair of @begin and @end comments. Program blocks are usually visualized as
boxes. A block that contains other programs is considered a workflow.

* A port represents a way in which data flows into or out of a program or workflow.
Ports are identified by @in and @out annotations in the source code comments.

* A channel is a connection between an Qout port of a program and an @in port of
another (or, in case of feedback loops, the same) program. YW infers channels by
matching the names of @in and @out ports within the same workflow.

Figure 1 depicts a workflow view extracted from a sample Python script for standardizing
Net Ecosystem Exchange (NEE) data in the MsTMIP project, described in Section 4.2.

LIDC | General Article

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 301

main

input_mask_file
input_data_file I NEE_data standardize with mask standardized_NEE_data I result NEE_pdf

land_water_mask

Figure 1. Process-oriented workflow view of a script: boxes represent programs (code blocks);
edges represent dataflow channels; edge labels indicate data elements.

2.1 Alternative Workflow Views

The process-oriented view in Figure 1 is the default YW view shown to the user, as it
emphasizes the overall block structure given by the script author using @begin and @end
markers. The extracted YW model can however be rendered in other forms. For example,
Figure 2 depicts a data-oriented view, where data elements (i.e., dataflow channels
obtained from @in and @out tags) are shown as nodes, while programs are only mentioned
in edge labels. Finally, Figure 3 shows a combined workflow view in which both programs
and data channels are represented as nodes.

NEE_data
land_water_mask

Figure 2. Data-oriented workflow view: program blocks are mentioned in edge labels only, while
data channels are exposed as proper graph nodes.

load data

input_data_file standardize with_mask

simple diagnose

standardized_NEE_data result_NEE_pdf

standardize with_mask

fetch mask

input_mask_file

Enput,data,fileH load_data H—{NEE,data)\
standardize with_mask
anul_mask_fileH fetch_mask Hand_waler_mask

Figure 3. Combined workflow view of a script: both programs and data are nodes.

H—F(standardizediNEEidataH simple_diagnose HesuILNEEipdf)

3 Querying YesWorkflow Models

The workflow structure of large scripts can be difficult to interpret fully even when
represented graphically. While the YW prototype is limited to such graphical views, the
YW comments and model are sufficient to support queries that reveal specific aspects of
the script in workflow terms. Example workflow-structure queries that will be supported
by YesWorkflow include the following:

List all of the code blocks defined in the script along with any description given for
each.

List the code blocks nested (directly or indirectly) within a particular code block.

List the code blocks that invoke a particular function or external program.

List the code blocks that contain a particular block (directly or indirectly).

LIDC | General Article

302 | YesWorkflow doi:10.2218/ijdc.v10i1.370

* List the code blocks that receive inputs derived (directly or indirectly) from the
outputs of a particular upstream code block.

* List the code blocks affected (directly or indirectly) by a particular parameter value
provided to the script.

3.1 Prospective Data Provenance Queries

In addition, YesWorkflow will allow scripts marked up with YW comments to be queried
from a data provenance perspective. Because YesWorkflow analyzes the definition of a

workflow (the script plus YW comments) rather than information recorded during a run

of the script, YesWorkflow will support queries against prospective provenance. Example
prospective provenance queries include:

* Given the name of an output of the script, list the inputs to the script that the output
depends on (directly or indirectly).

* List the computational steps (code blocks) involved in deriving a particular output
of the script, or of a named intermediate data product.

* For a particular computational step reveal where each input to the step comes from:
an input to the script, a constant in the script, or a value produced by a different
step, for example.

* Reveal the complete derivation of a particular script output. That is, list the
sequence of code blocks and input and intermediate data products leading to the
output. Results of queries of this kind optionally may be rendered graphically.

3.2 Inference of Retrospective Data Provenance

As described above, YesWorkflow will allow prospective provenance to be inferred from
scripts marked up with YW comments. In addition, we foresee that combining the
information extracted from a marked-up script with references to data files corresponding
to a run of that script will in some cases allow the retrospective provenance of those files
to be inferred (see also Bowers, McPhillips & Ludischer, 2012, and Zinn & Ludischer,
2010). That is, in cases where the entire sequence of data derivation steps for a particular
output can be determined unambiguously from YW annotations, YesWorkflow will support
queries of the following kind even in the absence of a run-time data-provenance recorder:

* Given a file output by a run of a script, indicate the input files from which it was
derived or by which it was affected.

* Given an input file to a script, indicate which output files were derived from or
affected by the data contained in that file.

* Indicate which of the parameter values applied to a run of the script affected which
of its output files.

LIDC | General Article

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 303

4 YesWorkflow Examples

In the following we show YW views extracted from real-world scientific use cases. The
scripts were annoted with YW tags by scientists and script authors, using a very modest
training and mark-up effort.2 Due to lack of space, the actual MATLAB and R scripts
with their YW markup are not included here. However, they are all available from the
yw-idce-15 repository on the YW GitHub site.?

4.1 Analysis of Gene Expression Microarray Data

Bioinformatics workflows commonly possess a pattern of large numbers of incoming
parameters and outputs at each stage of computation. In addition, analysis of even a
single bioinformatics dataset tends to yield a large number of different output files.
Hence, bioinformatics pipelines are attractive candidates for workflow systems, which can
capture this complexity (Bieda, 2012). Figure 4 shows a YW representation of an R script
performing a classic, complex bioinformatics task: analysis of Affymetrix gene expression
microarray data. This R script was modeled on our previous workflows developed in the
Kepler environment (Stropp, McPhillips, Ludédscher & Bieda, 2012). The script analyzes
experimental designs comprised of two conditions (e.g., microarrays from control-treated
cells vs microarrays from drug-treated cells) with the option to use multiple replicates
for each condition. The R script employs a set of standard Bioconductor (Gentleman
et al., 2004) packages mixed with custom programming. The workflow consists of
four fundamental tasks: normalization of data across microarray datasets (Normalize),
selection of differentially expressed genes (DEGs) between conditions (SelectDEGs),
determination of gene ontology (G0) statistics for the resulting datasets (GO_Analysis),
and creation of a heatmap of the differentially expressed genes (MakeHeatmap). Each
module produces outputs, and each module (aside from MakeHeatmap) requires external
parameter inputs. Importantly, this graphical representation clearly indicates the
dependence of each module on datasets and parameter inputs. This example demonstrates
that YesWorkflow can provide informative visualizations of bioinformatics workflows,
especially workflows involving large numbers of inputs and outputs.

GO_stats_MF_lower_in_test_condition

GO_stats_gene_list_higher_in_test_condition _

GO_stats_BP_higher_in_test_condition

normalized_data_only_vaues GO_stats_p_value_cutoff GO_stats_CC_higher_in_test_condition

DEG_list_lower_in_test_condition [GO_stats_MF_higher_in_test_condition
GO_Analysis — —_——

CEL_and_covdesc_Directory . GO_stats_gene_list_lower_in_test_condition
= Normali _data DEG_list_higher_in_test_condition

GO_stats_BP_lower_in_test_condition

SelectDEGs

DEG_list
— MakeHeatmap
minimum_fold_change_for_DEG DEG_list_lower_in_test_condition

)
\m GO_stats_CC_lower_in_test_condition
)
cutoff_p_value_for DEG DEG_list_full_info
o heatmap
DEG_list_summary
)

DEG_list_higher_in_test_condition

Figure 4. Process workflow view of an Affymetrix analysis script (in R).

2 For all of these scripts, learning the YW model and annotating the scripts was done in a few hours.
3 YesWorkflow GitHub repositories: https://github.com/yesworkflow-org

LIDC | General Article

http://yesworkflow.org/yw-idcc-15
https://github.com/yesworkflow-org

304 | YesWorkflow doi:10.2218/ijdc.v10i1.370

4.2 Terrestrial Biospheric Modeling

In the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)4,
climate scientists primarily use MATLAB scripts to standardize terrestrial biosphere
model output across multiple models and simulation runs for intercomparison purposes
and to facilitate diagnosis and attribution. MsTMIP is a large, collaborative effort, aimed
at harmonizing a number of complex terrestrial biospheric models for the purposes
of comparing these model outputs (Huntzinger et al., 2013). There is a strong need
to standardize many aspects of the MSTMIP process, to assure greater uniformity in
the treatment of the codes and outputs of the disparate models in the intercomparison
analyses. Current practice in MsTMIP, however, is representative of many scientific
investigations in that researchers develop their codes with a specific focus on functionality
and efficiency. Comments are added primarily as bookmarks to assist with accessing
appropriate code areas for debugging, optimization, or discussion. In the more general
case, depending on whether the codes are developed in a collaborative context, structured
in-code documentation may be recommended or required by the project. Nevertheless,
the mechanisms for these code annotations are typically unformalized and unstructured,
and rely primarily on the ability to insert non-executable comment statements in the code.
As the complexity of code grows, and the number of variants and alternative
approaches increases, MSTMIP researchers need a clear and consistent way to document,
review, and share their model intercomparison scripts. This provides a compelling
use case for YesWorkflow, in that MsTMIP brings together models from a number of
independent efforts that require harmonization into a single framework for evaluating their

input_effect_variable
fetch effect variable
effect_variable_1

convert_effect_variable units U

effect_variable_2

create_land_water_mask U

land_water_mask input_drough_variable

‘ definejmughtsu fetch . drought_vari. able
(predroughLeﬂecharlabler [drougm,va\ue,vanable,wj (vecovery,ume,vanablejj (drougm,numbev,vanab\ej]

VAN l
[swgma,dv,evem] (monm,dv,lengmj (drougm,vanable,\]
N L
calculate_data_variables

\
export_recovery_time_figure U export_drought_value_variable_figure U

Figure 5. Combined workflow view of a MsTMIP script (in MATLAB). YW views can be easily

tweaked via Graphviz properties in the generated DOT files: here, a “Taverna-style”
(Oinn et al., 2004) top-down layout is used, as opposed to the default left-to-right display.

detrend_deseasonalize_effect_variable U

effect_variable_3

4 MSTMIP website: http://nacp.ornl.gov/MsTMIP.shtml

LIDC | General Article

http://nacp.ornl.gov/MsTMIP.shtml

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 305

relative capabilities to predict critical earth system features, such as global Net Ecosystem
Exchange (NEE) data from terrestrial biogeographic realms.
A YW representation of a MATLAB script from MsTMIP is shown in Figure 5.

4.3 Paleoclimate Reconstruction

As another working example from a different field, we have used the YW markup
syntax to analyze the paleoclimate reconstruction workflow presented by Bocinsky
and Kohler (Bocinsky & Kohler, 2014). Their reconstruction method takes as input a
spatial interpolation of contemporary weather data, the long-term record of climate held
in regional tree-ring chronologies, and a handful of parameters. It then uses a novel
regression-based analysis method to generate spatial reconstructions of climate extending
2000 years or more back in time. Figure 6 shows that the YW system nicely exposes
the prospective provenance hidden in the underlying R script, even for scripts whose
workflow views are highly non-linear.

(master,data,directowj (prism,directora

GetModernClimate

(calibrationiyears) Getrodictionfyears) Greeiringidata) (PF{ISMiannualfgrowingfseasonfprecipitation)

SubsetAllData
dendro_series_for_calibration
CAR_Analysis_unique I

Ge||wise,unique,selected,linear,models)

(dendro,series,for,reconstruction)

CAR_Analysis_union

ceIIwise,union,selemed,linear,modelsa

e

’ CAR_Reconstruction_union
(raster,brick,spatiaLreconstruction) (raster,brick,spatial,reconstruction,errors)

\ /

l CAR_Reconstruction_union_output U

—

(ZuniCibolaﬁPRISMigrowfprcpfolsfloocvfunionirecons.tif) (ZuniCibolaﬁPRISMigrowfprcpfoIsfloocvfunionferrors.tiD

Figure 6. Combined workflow view of a paleoclimate reconstruction R script (Bocinsky & Kohler,
2014).

LIDC | General Article

306 | YesWorkflow doi:10.2218/ijdc.v10i1.370

5 YW Architecture

The YesWorkflow software distribution is envisioned as a set of standard modules that
can be used together or separately. The primary goal of this modularity is to enable YW
users and developers independently to implement alternatives to any module, as needed,
to solve problems particular to their research domain. It will be possible to develop these
alternative implementations and extensions in any programming language. One way we
plan to facilitate such easy replacement of YW modules is to require that each standard
module optionally input and output files — with well-defined formats — representing the
expected inputs or outputs of that module. Any program that produces or consumes these
file formats can then function as an alternative to one or more standard YW modules and
can provide identical, overlapping, or completely different capabilities (e.g., the current
YW prototype is primarily implemented in Java, but also contains some alternative YW
modules implemented in Python).

Six standard modules (implemented in Java) are currently implemented or planned.
The YW-Extract module identifies YW comments in a script and produces a language-
independent representation of the script and the YW annotations. YW-Model interprets
the comments identified by YW-Extract and builds a model of the script in terms of
entities analogous to the components of a traditional scientific workflow as described in
Section 2, while YW-Graph operates on the outputs of YW-Model to produce the dataflow
graphs discussed in that same section. As described in Section 3, the planned YW-Query
module will allow users to probe the structure of a complex script without having to
inspect a visual representation of it. An envisioned YW-Validate module will ensure that
YW comments in a script are consistent both with the other YW comments in the script
and with the script itself. Finally, the YW-CLI module enables a user to execute sequences
of the standard modules, starting from an input file with format appropriate to the first
module in the executed sequence.

6 Related Work

The YW approach can be seen in the tradition of programming code annotation, which is
widely used for facilitating code understanding and for generating documentation (e.g.,
Doxygen>, Epydoc®, Javadoc”). YesWorkflow builds on programming code annotation
to provide a higher level of abstraction by revealing the dataflow that underlies the
interactions between the different pieces of a script or program.

YesWorkflow is also related to ideas from literate programming?® and available in tools
such as Knitr (Xie, 2013) and IPython (Pérez & Granger, 2007). In literate programming,
a script is decomposed into snippets of macros, which are interspersed within documents

5 Doxygen website: http://www.doxygen.org/

¢ Epydoc website: http://epydoc.sourceforge.net/

7 Javadoc documentation home page: http://www.oracle.com/technetwork/java/javase/documentation/
index-jsp-135444.html

8 Don Knuth has argued (Knuth, 1984) that we should change our traditional attitude to programming:
“Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather
on explaining to human beings what we want a computer to do”.

LIDC | General Article

http://www.doxygen.org/
http://epydoc.sourceforge.net/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 307

that are written in natural language to explain the scripts and eventually analyze the
results it generates upon execution. While borrowing ideas from literate programming,
YesWorkflow is primarily targeted at developers who are using traditional pure scripting
environments to edit their scripts and programs. YesWorkflow aims at providing a
consistent interpretation and visualization of codes wherever the language provides for
insertion of non-executable comments.

YesWorkflow can also contribute to the area of reproducible computational research
(Stodden et al., 2014), which seeks to provide scientists with sufficient information to
understand and eventually validate the results claimed by their peers. For instance, the
SOLE system (Pham, Malik, Foster, Di Lauro & Montella, 2012) allows linking articles
with science objects, which can be source code, a dataset, or a workflow. SOLE allows the
reader (curator) to specify human-readable tags that link the paper with science objects,
and it transforms each tag into a URI that points to a representation of the corresponding
object. While in SOLE the scientific article is the main object that contains links to other
(science) objects, we focus on the scripts produced by the scientists, and aim to facilitate
the understanding of their dataflow logic. Gavish and Donoho (2011) present the notion
of a Verifiable Computational Result (VCR), where every result is assigned a unique
identifier, and results produced under the exact same conditions have the same identifier
to support reproducibility.

Various tools have been proposed to capture the runtime provenance of scripts.
Mechanisms that capture provenance at the operating system level (Frew, Metzger &
Slaughter, 2008; Guo & Seltzer, 2012; Muniswamy-Reddy, Holland, Braun & Seltzer,
2006) monitor system calls to track the data dependencies between computational
processes. Some tools (Bochner, Gude & Schreiber, 2008; Davison, 2012; Huq, Apers
& Wombacher, 2013; Murta et al., 2014) have been developed to capture runtime
provenance for Python scripts: while Bochner et al. (2008) and Davison (2012) propose
Python libraries and APIs that need to be added to the code to capture the execution
steps, ProvenanceCurious (Hugq et al., 2013) and noWorkflow (Murta et al., 2014) are
transparent and do not require changes to the scripts. Similarly, RDataTracker (Lerner
& Boose, 2014) captures provenance from the execution of R scripts, and the approach
taken by Tariq, Ali and Gehani (2012) supports all programming languages allowed by
the LLVM compiler framework. We note that the YW approach is complementary to these
tools, since it captures prospective provenance of scripts. We argue that YesWorkflow,
along with retrospective provenance approaches, provide a low-effort entry point for
scientists who want to reap some of the benefits of scientific workflow systems while still
using their familiar scripting environments.

7 YesWorkflow Development Roadmap

In the following we list some limitations of the current YesWorkflow prototype and
highlight features planned for future releases of the software.

7.1 Visualization of Nested Code Blocks

The YW-Extract and YW-Model modules support nesting of code blocks. Any pair of
@begin and @end comment lines can enclose code that contains any number of other code
blocks delimited with @begin and @end comment lines. The workflow model constructed

LIDC | General Article

308 | YesWorkflow doi:10.2218/ijdc.v10i1.370

for a script reflects such nesting: the top-level workflow corresponding to the script as a
whole may contain one or more programs (code blocks), and any of these programs can
in turn be a sub-workflow that contains further nested programs and workflows. Future
versions of YW-Graph will reveal these nested code blocks and render sub-workflows
graphically.

7.2 Functions and Function Calls

YW-Extract currently expects nested code blocks to be defined in-line. However, many
scripts are structured as functions (or classes) with a top-level script that calls these
functions (or methods on objects). These functions can in turn call other functions.
Future versions of YesWorkflow will allow function declarations to be marked up with YW
comments in a manner similar to that supported by Javadoc and Doxygen. Calls to these
functions also will be annotated with YW markup. The result will be that YW-Extract and
YW-Model will be able to represent function calls as nested code blocks.

7.3 Interactive Graphs

YW-Graph currently produces static graphical views (in the well-known Graphviz/DOT
format). An interactive viewer for YW graphical output will make these graphs easier to
explore and interpret. In the planned graphical user interface, clicking on a data item in
the combined or data views optionally will highlight the (prospective) direct and indirect
data dependencies for that data item (the data from which it will be derived when the script
is run). Features for expanding and collapsing nested subworkflows also will facilitate
exploration of these graphs.

7.4 Live Graph View

Although the primary function of YesWorkflow is to reveal workflow-like structure in
existing scripts, YesWorkflow also can be used as a design tool when developing new
scripts (or even before a script is written). Future versions of YesWorkflow will better
support such applications by providing live-update features to the interactive graph
capabilities described above. Given a set of script files, the live-graph feature will monitor
these files for changes and update the chosen graphical view automatically. Users of this
feature will continue to be able use their favorite text editor or IDE for developing their
scripts.

7.5 Distinguished Data and Parameters

The inputs to scripts for processing scientific data often can be viewed either as data
(the data to be processed by the scripts) or as parameters (values that control how that
data is processed). Planned versions of the YW comment vocabulary will allow data and
parameters to be distinguished. YW-Graph optionally will emphasize graph edges, nodes,
and labels representing data over those representing parameters.

LIDC | General Article

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips et al. | 309

7.6 Validation of Comments

The future YW-Validate module will perform extensive validation of YW comments
in light of the actual code in the script. This capability will help guide users adding
YW comments to their script. Perhaps more importantly, automatic validation will help
prevent initially correct YW comments from becoming stale (i.e., incorrect) when the
underlying script is changed or refactored. YW-Validate will perform validity checks
including the following:

* Confirm that data names used in @in and @out comments actually appear in the
code bracketed by associated @begin and @end comments.

e Confirm that the names of functions referred to in YW comments for function
declaration or for function calls match the names of the functions actually declared
or called.

* Confirm that continuous data dependency chains exist from each script output all
the way back to script inputs (and embedded constants).

8 Conclusions

YesWorkflow is an agile, grass-roots effort that aims to bring workflow modeling and
analysis features to scientific workflows that are defined in script form. Through simple
user-annotations in the comments of scripts, dataflow and workflow structure are revealed
by the YW toolkit. The user can thus exploit prospective provenance information from
scripts by, for example, visualizing, querying, and analyzing this information.

Our early YW prototype® has been used by scientists from different domains to mark
up complex, real-world scientific scripts with ease. Encouraged by the enthusiastic
response of the early adopters, a number of researchers will be incorporating YesWorkflow
into their projects, thereby guiding and driving the future development of the toolkit.

MSsTMIP researchers plan to annotate their scripts such that authors, as well as
reviewers and potential new users, will be able to click on the workflow steps in the
interactive YW graph viewer and inspect the corresponding code-blocks in the original
script. When clicking on data elements, they will be taken to a folder containing the
data instances that were used in the various runs of the script (provided these have been
shared). Since the YW approach is language independent, it will also facilitate code
migration from MATLAB to R, say, or from R to Python.

In the Kurator project!® we plan to enable collection managers to author their own
data curation workflows using both an Akka-based workflow system and via scripting
languages such as Python and R. In the latter case, Kurator tool users will annotate their
scripts with YW comments to enable provenance queries to span script-based curation
workflows. The Kurator team also plans to use the YW-Graph and YW-Query tools to
graphically render workflows defined using the Kurator-Akka workflow system and to
query the prospective provenance of products of these workflows.

9 YesWorkflow GitHub repositories: https://github.com/yesworkflow-org
10 Kurator Project public wiki: http://wiki.datakurator.net/

LIDC | General Article

https://github.com/yesworkflow-org
http://wiki.datakurator.net/

310 | YesWorkflow doi:10.2218/ijdc.v10i1.370

Finally, DataONE is planning a number of enhancements to the YW annotation
language. For example, in addition to the currently supported, simple user-defined
vocabulary for program blocks and data elements, controlled vocabularies from shared
ontologies may be used with these extensions. Similarly, to improve YW interoperability
within the DataONE infrastructure, PROV (Moreau & Missier, 2013) and ProvONE
(Cuevas-Vicenttin et al., 2015) compatible vocabulary extensions may be used in
YesWorkflow in the future.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
grants DBI-1356751, ACI-0830944, SMA-1439603, SMA-1439591, SMA-1439516,
and IIS-1118088. Juliana Freire and Fernando Chirigati were supported in part by the
Moore-Sloan Data Science Environment at NYU, Sloan Foundation, and NSF awards
CNS-1229185 and CNS-1405927. Mark Bieda and Tyler Kolisnik were supported by
University of Calgary startup funds.

References

Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. E., Silva,
C. T. & Vo, H. T. (2005). VisTrails: Enabling interactive multiple-view
visualizations. In Visualization 2005 (VIS "05) (pp. 135-142). IEEE. doi:10.1109/
VISUAL.2005.1532788

Bieda, M. (2012). Kepler for ‘omics bioinformatics. Procedia Computer Science, 9,
1635-1638. doi:10.1016/j.procs.2012.04.180

Bochner, C., Gude, R. & Schreiber, A. (2008). A Python library for provenance recording
and querying. In J. Friere, D. Koop & L. Moreau (Eds.), Lecture Notes in Computer
Science: Vol. 5272. Provenance and Annotation of Data and Processes (pp.
229-240). doi:10.1007/978-3-540-89965-5_24

Bocinsky, R. K. & Kohler, T. A. (2014). A 2,000-year reconstruction of the rain-fed
maize agricultural niche in the US southwest. Nature Communications, 5, Article
5618. doi:10.1038/ncomms6618

Bowers, S., McPhillips, T. & Ludischer, B. (2012). Declarative rules for inferring
fine-grained data provenance from scientific workflow execution traces. In P. Groth

& J. Frew (Eds.), Lecture Notes in Computer Science: Vol. 7525. Provenance and
Annotation of Data and Processes (pp. 82-96). doi:10.1007/978-3-642-34222-6_7

Clifford, B., Foster, 1., Voeckler, J.-S., Wilde, M. & Zhao, Y. (2008). Tracking provenance
in a virtual data grid. Concurrency and Computation: Practice and Experience,

20(5), 565-575. doi:10.1002/cpe.1256

Cuevas-Vicenttin, V., Ludéscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei,
Y., ... Leinfelder, B. (2015, January 15). ProvONE: A PROV extension data

LIDC | General Article

http://dx.doi.org/10.1109/VISUAL.2005.1532788
http://dx.doi.org/10.1109/VISUAL.2005.1532788
http://dx.doi.org/10.1016/j.procs.2012.04.180
http://dx.doi.org/10.1007/978-3-540-89965-5_24
http://dx.doi.org/10.1038/ncomms6618
http://dx.doi.org/10.1007/978-3-642-34222-6_7
http://dx.doi.org/10.1002/cpe.1256

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips etal. | 311

model for scientific workflow provenance. Retrieved from https://purl.dataone.org/
provone-v1-dev

Davidson, S. B. & Freire, J. (2008, June). Provenance and scientific workflows:
challenges and opportunities. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (pp. 1345-1350). New York,
NY: ACM Press. doi:10.1145/1376616.1376772

Davison, A. (2012). Automated capture of experiment context for easier reproducibility
in computational research. Computing in Science & Engineering, 14(4), 48-56.
doi:10.1109/MCSE.2012.41

Dou, L., Cao, G., Morris, P., Morris, R., Ludischer, B., Macklin, J. & Hanken, J. (2012).
Kurator: A Kepler package for data curation workflows. Procedia Computer
Science, 9, 1614—-1619. doi:10.1016/j.procs.2012.04.177

Frew, J., Metzger, D. & Slaughter, P. (2008). Automatic capture and reconstruction
of computational provenance. Concurrency and Computation: Practice and
Experience, 20(5), 485—-496. doi:10.1002/cpe.v20:5

Gavish, M. & Donoho, D. (2011). A universal identifier for computational results.
Procedia Computer Science, 4, 637-647. doi:10.1016/j.procs.2011.04.067

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit,
S., ... Zhang, J. (2004). Bioconductor: Open software development for

computational biology and bioinformatics. Genome biology, 5(10), R80. doi:
10.1186/gb-2004-5-10-r80

Goecks, J., Nekrutenko, A. & Taylor, J. (2010). Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the
life sciences. Genome Biology, 11(8), R86. doi:10.1186/gb-2010-11-8-r86

Guo, P. J. & Seltzer, M. (2012). BURRITO: Wrapping your lab notebook in
computational infrastructure. In 4th USENIX Workshop on the Theory and Practice
of Provenance (TaPP ’12). Berkeley, CA: USENIX Association. Retrieved from
https://www.usenix.org/conference/tapp 12/workshop-program/presentation/guo

Heidorn, P. B. (2008). Shedding light on the dark data in the long tail of science. Library
Trends, 57(2), 280-299. doi:10.1353/1ib.0.0036

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei,
Y., ... Zhu, Q. (2013). The North American Carbon Program Multi-Scale
Synthesis and Terrestrial Model Intercomparison Project—Part 1: Overview
and experimental design. Geoscientific Model Development, 6(6), 2121-2133.
doi:10.5194/gmd-6-2121-2013

Hug, M. R., Apers, P. M. G. & Wombacher, A. (2013). ProvenanceCurious: a tool to infer
data provenance from scripts. In EDBT ’13: Proceedings of the 16th International
Conference on Extending Database Technology (pp. 765-768). New York, NY:
Association for Computing Machinery. doi:10.1145/2452376.2452475

LIDC | General Article

https://purl.dataone.org/provone-v1-dev
https://purl.dataone.org/provone-v1-dev
http://dx.doi.org/10.1145/1376616.1376772
http://dx.doi.org/10.1109/MCSE.2012.41
http://dx.doi.org/10.1016/j.procs.2012.04.177
http://dx.doi.org/10.1002/cpe.v20:5
http://dx.doi.org/10.1016/j.procs.2011.04.067
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2010-11-8-r86
https://www.usenix.org/conference/tapp12/workshop-program/presentation/guo
http://dx.doi.org/10.1353/lib.0.0036
http://dx.doi.org/10.5194/gmd-6-2121-2013
http://dx.doi.org/10.1145/2452376.2452475

312 | YesWorkflow doi:10.2218/ijdc.v10i1.370

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97-111.

Lerner, B. & Boose, E. (2014). RDataTracker: Collecting provenance in an interactive
scripting environment. In 6th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2014). Berkeley, CA: USENIX Association. Retrieved from
https://www.usenix.org/conference/tapp2014/agenda/presentation/lerner

Lim, C., Lu, S., Chebotko, A. & Fotouhi, F. (2010, July). Prospective and Retrospective
Provenance Collection in Scientific Workflow Environments. In 2010 IEEE
International Conference on Services Computing (pp. 449-456). IEEE. doi:
10.1109/SCC.2010.18

Ludascher, B., Altintas, 1., Berkley, C., Higgins, D., Jaeger, E., Jones, M., ... Zhao, Y.
(2006). Scientific workflow management and the Kepler system. Concurrency and
Computation: Practice and Experience, 18(10), 1039-1065. doi:10.1002/cpe.994

Moreau, L. & Missier, P. (2013). PROV-DM: The PROV data model. Retrieved from
W3C website: http://www.w3.org/TR/prov-dm/

Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U. & Seltzer, M. (2006). Provenance-
aware storage systems. In Proceedings of the USENIX 06 Annual Technical
Conference (pp. 43-56). Berkeley, CA: USENIX Association. Retrieved from
https://www.usenix.org/legacy/events/usenix06/tech/muniswamy-reddy.html

Murta, L., Braganholo, V., Chirigati, F., Koop, D. & Freire, J. (2014). noWorkflow:
Capturing and analyzing provenance of scripts. In B. Ludischer & B. Plale (Eds.),
Lecture Notes in Computer Science: Vol. 8628. Provenance and Annotation of Data
and Processes (pp. 71-83). doi:10.1007/978-3-319-16462-5_6

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., . .. Li, P. (2004).
Taverna: A tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17), 3045-3054. doi:10.1093/bioinformatics/bth361

Pérez, F. & Granger, B. E. (2007). IPython: A system for interactive scientific computing.
Computing in Science and Engineering, 9(3), 21-29. doi:10.1109/MCSE.2007.53

Pham, Q., Malik, T., Foster, I., Di Lauro, R. & Montella, R. (2012). SOLE: Linking
research papers with science objects. In P. Groth & J. Frew (Eds.), Lecture Notes in
Computer Science: Vol. 7525. Provenance and Annotation of Data and Processes
(pp- 203-208). doi:10.1007/978-3-642-34222-6_16

Stodden, V., Leisch, F. & Peng, R. D. (Eds.). (2014). Implementing reproducible research.
Boca Raton, FL: CRC Press.

Stropp, T., McPhillips, T., Ludéscher, B. & Bieda, M. (2012). Workflows for microarray
data processing in the Kepler environment. BMC Bioinformatics, 13, Article 102.

doi:10.1186/1471-2105-13-102

LIDC | General Article

https://www.usenix.org/conference/tapp2014/agenda/presentation/lerner
http://dx.doi.org/10.1109/SCC.2010.18
http://dx.doi.org/10.1109/SCC.2010.18
http://dx.doi.org/10.1002/cpe.994
http://www.w3.org/TR/prov-dm/
https://www.usenix.org/legacy/events/usenix06/tech/muniswamy-reddy.html
http://dx.doi.org/10.1007/978-3-319-16462-5_6
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1007/978-3-642-34222-6_16
http://dx.doi.org/10.1186/1471-2105-13-102

doi:10.2218/ijdc.v10i1.370 Timothy McPhillips etal. | 313

Tariq, D., Ali, M. & Gehani, A. (2012). Towards automated collection of application-
level data provenance. In 4th USENIX Workshop on the Theory and Practice of
Provenance (TaPP ’12). Berkeley, CA: USENIX Association. Retrieved from
https://www.usenix.org/conference/tapp 12/workshop-program/presentation/tariq

Tsai, Y., McPhillips, S. E., Gonzélez, A., McPhillips, T. M., Zinn, D., Cohen, A. E., ...
Soltis, S. M. (2013). Autodrug: fully automated macromolecular crystallography
workflows for fragment-based drug discovery. Acta Crystallographica Section D:
Biological Crystallography, 69(5), 796-803. doi:10.1107/S0907444913001984

Van Zundert, J. (2012). If you build it, will we come? Large scale digital infrastructures
as a dead end for digital humanities. Historical Social Research/Historische
Sozialforschung, 37(3), 165-186. Retrieved from http://www.jstor.org/stable/
41636603

Wallis, J. C., Rolando, E. & Borgman, C. L. (2013). If we share data, will anyone use
them? Data sharing and reuse in the long tail of science and technology. PLoS
ONE, 8(7), €67332. doi:10.1371/journal.pone.0067332

Xie, Y. (2013). Dynamic documents with R and knitr. Boca Raton, FL: CRC Press.

Zinn, D. & Ludischer, B. (2010). Abstract provenance graphs: anticipating and exploiting
schema-level data provenance. In D. L. McGuinness, J. R. Michaelis & L. Moreau
(Eds.), Lecture Notes in Computer Science: Vol. 6378. Provenance and Annotation
of Data and Processes (pp. 206-215). doi:10.1007/978-3-642-17819-1_23

LIDC | General Article

https://www.usenix.org/conference/tapp12/workshop-program/presentation/tariq
http://dx.doi.org/10.1107/S0907444913001984
http://www.jstor.org/stable/41636603
http://www.jstor.org/stable/41636603
http://dx.doi.org/10.1371/journal.pone.0067332
http://dx.doi.org/10.1007/978-3-642-17819-1_23

	Introduction
	YesWorkflow Model and Annotation Syntax
	Alternative Workflow Views

	Querying YesWorkflow Models
	Prospective Data Provenance Queries
	Inference of Retrospective Data Provenance

	YesWorkflow Examples
	Analysis of Gene Expression Microarray Data
	Terrestrial Biospheric Modeling
	Paleoclimate Reconstruction

	YW Architecture
	Related Work
	YesWorkflow Development Roadmap
	Visualization of Nested Code Blocks
	Functions and Function Calls
	Interactive Graphs
	Live Graph View
	Distinguished Data and Parameters
	Validation of Comments

	Conclusions
	Acknowledgments
	References

