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Modelling the Digital Research Data Lifecycle
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Abstract

This paper develops and tests a lifecycle model for the preservation of research data by 
investigating the research practices of scientists. This research is based on a mixed-
method approach. An initial study was conducted using case study analytical 
techniques; insights from these case studies were combined with grounded theory in 
order to develop a novel model of the Digital Research Data Lifecycle. A broad-based 
quantitative survey was then constructed to test and extend the components of the 
model. The major contribution of these research initiatives is the creation of the Digital 
Research Data Lifecycle, a data lifecycle that provides a generalized model of the 
research process to better describe and explain both the antecedents and barriers to 
preservation. The antecedents and barriers to preservation are data management, 
contextual metadata, file formats, and preservation technologies. The availability of 
data management support and preservation technologies, the ability to create and 
manage contextual metadata, and the choices of file formats all significantly affect the 
quality of research data preserved.
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Introduction

Computer-based technology has greatly increased the quantity of research data. This 
data deluge is becoming an important area of study in computer science, information 
science, and domain sciences. One of the primary areas of study in this emerging field is 
data preservation; that is, the ability to provide long term access to the data for reuse. 
Multiple reasons justify this growing interest in digital data preservation: the data itself 
has significant scientific value; it can be reused to fuel new ideas and insights 
(Association of Research Libraries [ARL], 2006; National Science Board [NSB], 2005; 
Tibbo, 2014); it is an integral part of the scientific record as evidence of the rhetorical 
structure of scholarly communication (Rusbridge, 2007; Swan and Brown, 2008); it is 
necessary for replication and validation of scientific results (Swan and Brown, 2008); 
the data has significant economic value as intellectual capital, an important and 
invaluable resource that can be used repeatedly (ARL, 2006; Rumsey, 2006); and 
scientific digital data is a generalized good in that society benefits both directly and 
indirectly when this data is available for citizen scientists, for teaching, for commercial 
reuse, and for policy development (Lord and Macdonald, 2003; Rumsey, 2010).

Archiving and preservation of scientific data can no longer be thought of as a post-
project activity (Anderson, 2004). Preserving digital data should be an important 
function of scientific infrastructures (Hacker and Wheeler, 2007). However, there is a 
lack of “evidence from the community of active researchers with respect to their own 
needs and aspirations within the research life cycle” about data management roles and 
responsibilities (Pryor and Donnelly, 2009). New research is needed to describe, 
measure, and mitigate the “obstacles to the longevity of digital materials” (Ross, 2007).

There is surprisingly little quantitative data describing the research behaviors of 
scientists in the digital preservation literature. Much of the quantitative data used in the 
literature was collected as part of a project to develop systems, services, and policies for 
data preservation within a single organization or a consortium (Henty, Weaver, 
Bradbury, and Porter, 2008; Jones, Ball, and Ekmekcioglu, 2008; Lyon, 2007; Marcus, 
Ball, Delserone, Hribar, and Loftus, 2007; Pinfield, Cox and Smith, 2014; Pritchard, 
Anand, and Carver, 2005; Pryor, 2007; Witt, Carlson, Brandt, and Cragin, 2009). Little 
of this data was used to develop theory. Theory development backed by quantitative 
data is necessary for the field to progress.

This research uses both qualitative and quantitative data to develop a new model for 
describing the lifecycle of research data. This research provides new insights into the 
workflow of the digital science process by quantifying the current state of digital 
science data management and describing the multiple environments in which data is 
created, used, saved, and preserved. The research questions that frame this study are:

1. What are the data practices of researchers and scientists?

2. How can the research practices be reflected in a lifecycle for research data?

3. What are the antecedents to preservation?

4. How do the threats to preservation affect the data lifecycle?

The first section of the paper will set the theoretical foundations for this research by 
reviewing the current and prior work on digital preservation of scientific data from the 
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computer science, information science, and domain sciences literatures. The 
methodology for this research follows the theoretical foundations. The results section 
describes the outcomes of the studies. The discussion of the results will develop the 
theoretical model of the Digital Research Data Lifecycle. The concluding section 
describes the impacts and implications of the presented research.

Theoretical Foundations

Lifecycles and Data Preservation

Lifecycle models can be used to represent the flow, relationships, and transitions of 
major components of large systems (Humphrey, 2006). Lifecycles provide an important 
and useful framework for understanding data preservation because active intervention 
early in that lifecycle is considered essential for success (Beagrie, 2006; Rice, 2007; 
Rumsey, 2007; Tibbo, 2014). Data lifecycles are path dependent (Rumsey, 2010), 
meaning that the cumulative weight of decisions made at each stage determines what is 
available at the next step (Wallis, Borgman, Mayernik and Pepe, 2008). Although the 
data itself may be more or less easily depicted through various descriptive processes, 
documenting the decisions at each stage of the lifecycle is more problematic and less 
easily automated (Borgman, 2007; Higgins, 2008; Wallis et al., 2008).
A number of preservation and curation lifecycles have been developed including the 
Digital Curation Center’s Curation Lifecycle Model (Higgins, 2008), the Library of 
Congress’ Digital Preservation Lifecycles, (Library of Congress, 2011), and the 
SHAMAN Project’s Information Lifecycle (Wilkes, Brunsmann, Heutelbeck, 
Hundsdörfer, Hemmje, and Heidbrink, 2011). These are generalized views that depict 
the process of curating existing data but do not have a detailed description of the 
process of the researchers who produce the data (Higgins, 2008; Library of Congress, 
2011). A more general life cycle model has been developed by the UK Data Archive. 
This model describes the steps to create research data including planning research, 
collecting data, processing and analyzing data, publishing and sharing data, preserving 
data, and reusing data (UK Data Service, 2018). This is depicted as a unidirectional 
cycle starting with data creation. The model addresses data sharing, data formats and 
migration, data licensing and other issues that are of vital importance to data archival 
repositories.

Within the literature, many data lifecycles that describe the process of creating data 
are either generic in that they pertain to an entire domain, or they are overly specific 
because they pertain to one particular lab or project. Domain or project-specific 
lifecycles have been developed from case studies (Borgman, 2007; Higgins, 2008; 
Long, Mantey, Wittenbrink, Haining, and Montague, 1995; Wallis et al., 2008). 
Lifecycles differ widely between different scientific domains (Borgman, Bowker, 
Finholt, and Wallis, 2009). Data management, data preservation, or data archiving are 
usually depicted as the final steps in the lifecycle of data. Data preparation for 
preservation or archival activities, intermediate file management, and assessment 
criteria for determining which files to preserve, are not discussed in existing models.

Institutions, data centers, users, funders, data creators, and publishers all have roles, 
rights, and responsibilities for curating, archiving, and preserving data (Hey and 
Trefethen, 2003; Lyon, 2007). But currently, all of the antecedents to preservation are 
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the responsibility of the scientists who created the data. The scientist is responsible for 
managing data for the life of the project, meeting standards of good practice, and for 
“work[ing] up data” for use by others (Lyon, 2007). The burden is on the scientist to 
manage the data, create the contextual metadata, and determine a final disposition of the 
data.

Data Management

Data management is the term used to describe the collective tasks to insure the long 
term archiving of and continuing access to data, including backups, contingency 
planning, process resumption planning, hardware and network redundancy, automatic 
failover, and site mirroring. Rusbridge (2007) claims that data management is a 
discipline that requires the necessary context information and associated documentation 
needed to ensure successful use and re-use of data. It is a dynamic process that needs to 
be mindful of the entire data lifecycle (Hank and Davidson, 2009; Rice, 2007; Zilinski, 
Scherer, Bullock, Horton, and Matthews, 2014). As the amount of data increases, so 
does the complexity and resources required to manage the data (Pritchard, Anand, and 
Carver, 2005).

Established and well-funded data collections often have dedicated data management 
staff (Karasti, Baker, and Halkola, 2006) and large data centers to manage the petabyte 
datasets (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, and Heber, 2005; Hey and 
Trefethen, 2003). However, managing data is most often the responsibility of individual 
scientists (Clements and McCutcheon, 2014; Henty, Weaver, Bradbury, and Porter, 
2008; Lynch, 2008; Lyon, 2008; Pritchard, Anand, and Carver, 2005). Scientists expect 
to manage their data and understand the importance of good data management but often 
are unsure of how best to implement good data management practices (Henty et al., 
2008; Pritchard, Anand, and Carver, 2005; Pryor and Donnelly, 2009; Ray, 2014). 
Without clear direction from funding agencies, researchers are left to create their own 
guidelines (Carlson, Johnston, and Huang, 2014; Jones, Ball, and Ekmekcioglu, 2008; 
Marcus, Ball, Delserone, Hribar, and Loftus, 2007). As discussed above, decisions made 
at one stage of the research lifecycle affect the range of options available at a later stage 
(Rumsey, 2010). Thus, decisions made as data is created are of the utmost importance 
because they influence all subsequent decisions.

Contextual Metadata

Metadata is a key factor for data preservation (Anderson, 2004; Hey and Trefethen, 
2003; NISO Framework Working Group [NISO], 2007; Rajasekar and Moore, 2001; 
Swan and Brown, 2008), for replicating results in the peer review process (Vardigan, 
Heus, and Thomas, 2008), for data reuse (Gray et al, 2005; Hey and Trefethen, 2003; 
Lyon, 2007), and for creating knowledge from data (Hey and Trefethen, 2003). 
Metadata can be as valuable as the original data (Ray, 2014). Well-managed data 
without metadata could be useless (Rumsey, 2010). Lesk (2008) contends that 
preservation, the long-term persistence of data, is tightly coupled with access; funding 
for preservation and curation activities will be based on the perceived usefulness and 
accessibility to the data. Access requires metadata (Minor, Critchlow, Hutt, Fleming, 
Bergstrom, and Sutton, 2014). And metadata is expensive; there is usually a direct 
relationship between the cost of metadata creation and the benefit to the user (NISO, 
2007). Creating metadata is a demanding task that is both complex and time-consuming 
(Michener, 2006; Minor et al., 2014; Pryor, 2007). Determining which attributes to 
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document, that is what to capture in metadata, is a difficult task for researchers (Ray, 
2014). Within the lifecycle, metadata can be created at virtually any point: prior to data 
creation, when files are saved, or when submitting to a repository (Pryor, 2007).

Formats

Scientific data, be it numeric, text-based, audio, video, or still images, must be 
represented in a format. A format is defined as “the internal structure and encoding of a 
digital object, which allows it to be processed, or to be rendered in a human-accessible 
form” (Brown, 2006). As the representation of data, format becomes an antecedent to 
preservation by providing the knowledge of the data itself. During the research life 
cycle, the original, raw data is often processed and transformed into a reduced or 
derived data product (Swan and Brown, 2008). Reading, rendering, and processing the 
data requires knowledge and understanding of the format. The probability of long-term 
persistence and access depends on the complexity and transparency of the file format 
itself; changes to the format or to the environment can make the underlying data 
unrecognizable and unusable (Abrams, 2004). Many domain-centric communities, such 
as astrophysics and genomics, have developed sets of standard formats to facilitate data 
sharing and system interoperability (Gardner et al., 2003; Westbrook, Ito, Nakamura, 
Henrick, and Berman, 2005); however, the standards are not well understood by the 
researchers for which they were designed (Mayernik, 2015). Effective data reuse, and 
ultimately the ability to preserve data, depends on standard data formats and tool sets to 
build, read and manage the data (Gardner et al., 2003, Ray, 2014).

Preservation Technologies

Creating a persistent data collection requires a set of technologies that Moore (2008) 
describes as the preservation infrastructure. Central to any preservation infrastructure is 
a physical repository. Through much of the literature on the technology infrastructure of 
scientific data, the term “repository” often refers to a simple data store for datasets 
(Venugopal, Buyya, and Ramamohanarao, 2006). A broader view defines a repository as 
both a system and set of services designed as an archive for digital data with context, 
fixity, persistence, and access (Ray, 2014). Repositories provide services to ensure the 
long term archiving of and continuing access to data including backups, contingency 
planning, process resumption planning, hardware and network redundancy, automatic 
failover, and site mirroring (Kowalczyk, 2008; Tibbo, 2014). Repository services 
increase in importance as the amount of data grows (Choudhary, Kandemir, No, Memik, 
Shen, Liao, et al., 2000). “Preservation technologies” refers to all of the technical 
infrastructures to support data collections.

For most scientists, such preservation infrastructure lies beyond their reach. They 
have neither access to a repository (Lyon, 2007) nor expertise to build a scalable storage 
infrastructure (Henty et al., 2008). Different research domains have very different 
requirements and constraints for data infrastructure (Tenopir, Dalton, Allard, Frame, 
Pjesivac, Birch, et al., 2015). Those who do have access to a repository find 
complicated workflows and difficult metadata creation processes limit both their ability 
and incentives to deposit (Crow, 2002; Lyon, 2007).
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Antecedents as Barriers to Preservation

The antecedents to preservation – data management, contextual metadata, formats, and 
preservation technologies – can also be barriers that prevent preservation. Rusbridge 
(2007) describes both the positive and negative navigation of these barriers. For projects 
with stable staffing and good communication, good sense can be sufficient to manage 
the data well enough to produce sound scientific results. But many projects produce data 
that is both unknowable and unusable – that is, without context, without the associated 
experimental conditions, in undocumented files, and in incomprehensible spreadsheets 
(Rusbridge, 2007). It is this second scenario – unidentifiable or unusable data – that is 
the primary barrier to preservation. Data that cannot survive the short term certainly 
cannot be preserved (Lynch, 2008; Vines, Albert, Andrew, Débarre, Bock, Franklin et 
al., 2014).

Data management as a barrier to preservation
For scientists, data management can be a low priority, can require skills and 

expertise not readily available, and can cost more than its perceived value. Although 
data preservation is important to funding agencies, most researchers are rightly focused 
on their science (Kowalczyk, 2008). With all academic incentives rewarding new work, 
it is counterintuitive for scientists to invest time, effort, and money to care for older data 
(Minor, Critchlow, Hutt, Fleming, Bergstrom, and Sutton, 2014). Data management is 
frequently considered to be overhead and not research (Anderson, 2004) and can be a 
burden for scientists (Bell, Hey, and Szalay, 2009; Kowalczyk, 2014).

Data management is a technical skill that requires an understanding of storage 
technologies, data replication strategies, and contingency planning. Researchers often 
lack the skills to be effective data managers (Treloar, Groenewegen, and Harboe-Ree, 
2007; Kowalczyk, 2014). Anderson (2004) contends that data managers need domain 
specific knowledge in order to understand how best to manage the data. Ideally, all 
stakeholders need to be involved in providing requirements for data management. But 
the self-sufficient research culture (Pryor, 2007) often hinders collaboration between 
scientists and trained data managers (Committee on Data for Science and Technology, 
2002). Rather than hiring data management experts, scientists have been using Ph.D. 
students as systems administrators, sacrificing a generation of new researchers (Hey, 
2010).

Data management is expensive in terms of both personnel and equipment. 
Frequently, scientists lack the necessary funding which would allow them to develop a 
robust data management infrastructure (ARL, 2006). Without ongoing data 
management, data is too frequently abandoned, transferring any data recovery costs to 
the future with significant risks of both loss of data and loss of context (Lord and 
Macdonald, 2003).

Metadata as a barrier
Creating metadata, that is making the data intelligible, can be a major impediment to 

preservation (Lyon, 2007). Data repository managers have developed guidelines that 
promote good metadata practices. These practices include documenting data throughout 
the research project and creating an audit trail of all of the data processing 
transformations wrought over the data life cycle (Vardigan, Heus, and Thomas, 2008). 
However, the process of creating metadata, what is described as the “mechanics of 
metadata,” causes both confusion and frustration among researchers (Swan and Brown, 
2008). Cheung and colleagues (2008) state that preservation is stymied by a “lack of 
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simple tools for publishing data with provenance information, lack of motivation for 
scientists to spend time and effort preparing their data for publication, concern with 
intellectual property rights, lack of standards for publishing datasets and discipline 
specific tools.” The incentives for creating usable, machine-processable metadata are 
not strong enough to overcome this absence of useable tools.

Formats as barriers
The wide variety of data formats used in different scientific disciplines and the 

amount of effort to convert data into different formats can create a barrier to 
preservation (Mann, Williams, Atkinson, Brodlie, Storkey, and Williams, 2002; Shiffrin 
and Börner, 2004). It has been well understood that format is an important factor in 
preservation; using well known, public, and transparent file formats allows data 
managers and archivists to process and maintain digital data more easily (Abrams, 
2004; Kowalczyk, 2008). Lawrence and colleagues (2000) discovered that it was easier 
to manage data in open formats, such as TIFF. But, they also discovered that even open 
formats can have a proprietary and thus, secret, set of tags that may not be supported in 
future versions. Because they manage and archive large collections of heterogeneous 
digital files, the Library of Congress, the National Archives of England, Wales and the 
United Kingdom, OCLC, and the National Archives of Australia have developed criteria 
for assessing the risks associated with formats. While these four sets of criteria differ in 
levels of complexity and thoroughness, there is a consensus that archival formats should 
be well documented and well understood; not wholly owned by a single commercial 
entity; widely adopted to increase the probability of commercial tools for migration and 
to ensure a long usage cycle to avoid repeated, short term migration; self-contained; and 
not reliant on a specific technical environment (Kowalczyk, 2008).

Preservation technology as a barrier
Data stewardship needs to be a shared responsibility. The researcher is initially 

responsible for data, but responsibility needs to be transferred to an institution for long 
term archiving and preservation (Lynch, 2008). The infrastructure that institutions have 
developed to help share the burden of data preservation can present barriers that make 
fulfilling their mission difficult.

A major barrier for preservation is the complicated, inflexible, and counterintuitive 
processes required to deposit data within these repositories (van Westrienen and Lynch, 
2005). Steinhart (2007), describing the use of an institutional data repository, states that 
even low barriers to a technology might not be low enough for researchers to use. In an 
international survey of institutional repositories, van Westrienen and Lynch (2005) 
found that a vast majority of data submission was the work of librarians, not the 
researchers. The literature is sparse on specific examples of data submission issues.

The repository culture may be negatively influencing preservation. Much of the 
research in digital preservation has focused on building the repository. This focus on 
repositories has created a model of preservation that is post hoc in that the repository 
tries to gather as much information as possible after the object is created and before it is 
ingested into the repository. However, these efforts are often too late because data is 
missing, not discoverable, or not recoverable (Kowalczyk, 2008).
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Methodology

This research used both qualitative and quantitative research methodologies. Grounded 
theory, a qualitative research methodology for inductively deriving theory based on the 
data gathered about one or more phenomena (Strauss and Corbin, 1990), was used to 
develop a set of constructs and relationships that describe the lifecycle of digital 
research data. A quantitative survey was then developed to verify, validate and extend 
the constructs and relationships developed by the grounded theory process. Combining 
quantitative data with qualitative data can indicate relationships that neither type of data 
alone could reveal; the triangulation can substantiate the constructs (Eisenhardt, 1989).

The process of determining the research sample for the grounded theory 
methodology differs from the process of determining the population in hypothesis-
testing research. In grounded theory, theoretical sampling is preferred to random 
sampling (Glaser and Strauss, 1967; Eisenhardt, 1989). Theoretical sampling allows 
researchers to choose cases that replicate or extend theory. By determining theoretically 
relevant categories and choosing cases a priori, researchers can create a diverse set of 
participants. Cases can be selected based on a number of criteria: the typical or 
representative case, the negative or disconfirming case, the exceptional or discrepant 
case, and polar types (Miles and Huberman, 1994; Glaser and Strauss, 1967; Voss, 
Tsikriktsis, and Frohlich, 2002). During the course of the research, cases can be added 
or eliminated as the research questions or frameworks are extended. Glaser and Strauss 
(1967), the creators of the grounded theory method, contend that theoretical sampling 
provides researchers with multiple options for gathering data that includes different 
views or vantage points from which to understand a category and to develop its 
properties.

Participants for the grounded theory development portion of this research were 
chosen based on the theoretical sampling model of polar examples – that is, participants 
that are diametrically opposite extremes. Eleven research centers and laboratories from 
three different universities were chosen based on four theoretically significant 
categories: size of lab, funding, scientific domain, and type of science. The data for this 
study was collected in one-hour semi-structured interviews with the directors of the 11 
laboratories and research centers. After iterative coding, a set of six primary constructs 
emerged: data creation, quality control, content, data collections, context and format. 
Due to the limited number of researchers interviewed and the nature of the data 
collected, the interactions between the six constructs were implied and could not be 
explicitly defined.

The preliminary study sample used the theoretically important categories of lab size, 
lab funding, and scientific domain. A recent JISC report indicated that size of lab can 
have an effect on data curation; larger labs have more resources to manage their data 
(Key Perspectives, 2010). Although no specific definitions of large or small labs exist, 
this study defines a large lab as five or more researchers while a small lab has fewer 
than five researchers. Lab funding can have similar impacts as lab size on preservation: 
more funding means more resources to apply to curation activities. As well, outside 
funding agencies can influence preservation by mandating data management policies or 
repository deposit (Coles, Carr, and Frey, 2007). The sample contains both well-funded 
and poorly funded labs. For this study, a well-funded lab is defined as one with both 
base funding and a sufficiently constant grant stream to keep the researchers for 
multiple years and across projects. A poorly funded lab is defined as one without base 
funding or without a steady stream of grant funding. Scientific domain is another 
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theoretically important distinguishing category. As with type of science, domain is used 
through the literature. Data practices vary widely between scientific domains (Wallis et 
al., 2008). Technical standards for both the data and the metadata as well as data storage 
standards are well established in some domains while nonexistent for others (Key 
Perspectives, 2010; Lord and Macdonald, 2003; Lyon, 2007). The sample for this study 
used a number of scientific domains, including biological/medical sciences, physical 
sciences, and informatics-based sciences.

To gather quantitative data to test, expand, and extend the constructs, a survey was 
conducted using a broad survey frame of grant awardees of the National Science 
Foundation (NSF). The potential participant pool of NSF grant awardees from 2007 
through 2010 was retrieved from the Scholarly Database (LaRowe, Ambre, Burgoon, 
Ke, and Börner, 2009). From the set of 41,917 principal investigators in the database, a 
subset of 1,200 unique PIs from each of the seven NSF directorates was selected 
randomly for a total pool of 8,400 potential participants. The 8,400 principal 
investigators were asked to participate via an email solicitation; 897 researchers took the 
survey, resulting in a response rate of 10.6% for the original sample.

The survey was designed to gather four demographic factors: researcher role, 
scientific domain, funding source, and size of laboratory. Of the participants in the 
study, 90% self-identified their role as principal investigators, 4% as Researcher, 2% as 
Post Doc, and 3% as other (including professor, librarians, or data stewards). As is 
evident from the numbers, the researcher role did not prove to be a useful demographic 
for statistical purposes.

The other demographics of the respondents are more evenly distributed than the 
research roles. The participants represent a diverse set of scientific domains; 52% of the 
participants are in what have traditionally been known as the “hard science” of the 
physical sciences, biology, and the geosciences, while 23% are in engineering and 
computer science. Researchers in mathematical sciences and education are the least 
represented in the participants. The domains are distributed though the sample as 
follows: Biological Sciences (22%), Computer and Information Science (11%), 
Education (4%), Engineering (13%), Geosciences (13%), Mathematical Sciences (8%), 
Physical Sciences (17%), and Social, Behavioral and Economic Sciences (13%). A large 
majority of the respondents, 82%, work in some type of lab or group setting, with 47% 
in a large lab and 35% in small labs; 17% of researchers work independently without a 
group or lab. The results of this survey indicate that 85% researchers are funded 
exclusively or primarily from grants. Only 8% of responders are funded exclusively or 
primarily from their institution. The participants in this study identified affiliations with 
334 unique research institutions. The participants and their institutions are widely 
dispersed geographically; as well as two European countries (England and Germany), 
Canada, and one U.S. territory (Puerto Rico), every state in the U.S. had at least one 
institution represented in this study. Most of the states had multiple institutions; six 
states had over ten participating institutions: Ohio had 12 institutions; Illinois had 13 
institutions; Texas had 14 institutions; Massachusetts had 17 institutions; New York had 
27 institutions; and California had 38 institutions.
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Results

Figure 1. The Digital Research Data Lifecycle.

In this section, a theoretical model of the Digital Research Data Lifecycle will be 
developed. This new lifecycle can be considered theoretical as it “consists of plausible 
relationships proposed among concepts and sets of concepts” (Strauss and Corbin, 
1990). The Digital Research Data Lifecycle (see Figure 1) is based on the data from 
both the preliminary study interviews and the responses to the survey described above. 
This detailed model has been constructed with the rich set of qualitative and quantitative 
data. The model describes a generalized research data lifecycle that accounts for the 
antecedents and barriers to preservation. The barriers to preservation are explicitly 
depicted by bold lines in the model. The model has four primary sections: data creation, 
quality control, content, and data collections.
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Data Creation

In the Digital Research Data Lifecycle, creating data is the first step in the process (see 
Figure 2).

Figure 2. The Data Creation Process.

The data creation process has two major components – mode and methodology. The 
mode is the manner of creation, either generating or gathering. Data can be generated by 
observations, instruments, or experiments; or data can be gathered via databases, 
vendors, webcrawls, and other processes. Methodology is the set of parameters that 
defines the processes, practices, and procedures for scientific research. For the Digital 
Research Data Lifecycle, methodology includes such processes as surveys, field studies, 
case studies, direct observation in experimental situations, analysis of instrument 
generated data, analysis of existing data sets, modelling and simulation, and text or 
language analysis.

Of the 796 researchers who responded to the question regarding their data 
generating practices, 91% created new data and 42% gathered existing data (see Table 
1). 

Table 1. Data creation methods.

Methods of Creating Data Responses
(1030)

Percentage
(of 796)

Data that you have created from observation, 
instruments, experiments, or other processes

678 91%

Data that you gathered from other sources 
such as databases, vendors, or webcrawls

315 42%

Other 37 5%

Scientific domain is a significant indicator for means of generating data ( c7
2

 = 
97.928 p < .001). Biologists and geoscientists were more likely to use both modes to 
generate their research data; they created new data and gathered existing data. Physical 
scientists were more likely to create data; and computer scientists and mathematicians 
were less likely to create data. Social scientists were more likely to gather data; 
engineers, mathematicians, and physical scientists were less likely to gather data.

Data is highly dependent on the research methodologies; thus, methodologies have a 
major impact on the Digital Research Data Lifecycle. Participants in this study were 
asked to identify the research methodologies that they use (see Table 2). Individuals 
could respond with multiple answers. The 782 responders used a total of 2,059 
methodologies (an average of 2.7 responses per individual). The participants used 
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surveys (19%), field studies (29%), case studies (12%), direct observation in 
experimental situations (46%), analysis of instrument generated data (49%), analysis of 
existing data sets (38%), modelling and simulation (48%), text or language analysis 
(8%).

Table 2. Participant research methodologies.

Methodologies Responses
(2076)

Percentage
(of 782)

Surveys 152 19%
Field studies 231 29%
Case studies 92 12%
Direct observation in experimental situations 366 46%
Analysis of instrument generated data 385 49%
Analysis of existing data sets 300 38%
Modeling and simulation 376 48%
Text or language analysis 62 8%
Other 112 14%

A majority of the respondents (79%) used multiple research methodologies, with 
67% using between two and four different methodologies. This opens a new window 
into the workings of digital research. If each of these methodologies creates multiple file 
formats, the complexity of the data to curate will grow with each additional 
methodology.

This research shows that the mode of data creation and the research methodologies 
interact. The research methodology dictates the mode of data creation; that is, the 
requirements of the research methodology determine whether the researcher generates 
new data, uses existing data, or needs a combination of newly generated data along with 
existing data, as a number of the methodologies use both modes of data creation. Rather 
than a binary choice of either/or, the mode of data creation is a continuum from 
exclusively gathering data to exclusively generating data (see Figure 3).

Figure 3. Data Creation and Methodology.

Clearly, analysis of existing data relies on gathering data. This is represented in 
Figure 3 as dark grey; the color lightens along the continuum toward methodologies that 
are exclusively data generating. Text analysis almost always involves preexisting textual 
data in the forms of books, journal articles, newspapers, websites, metadata records, and 
other content. This textual data must be gathered prior to the analysis. The analysis, 
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then, generates data as the researcher identifies, extracts, indexes, or correlates relevant 
components. This new data can be incorporated into the text itself using markup 
languages, such as TEI, or can be extracted and stored in separate files such as indexes, 
correlation matrixes, and tag clouds. Modelling and simulation methodologies generate 
new data but also require existing data. For example, an initial set of existing data is 
used to seed a model or simulation, which then generates new data, which can then seed 
further models and simulations. 

Data creation is not a single event in the research process but is an ongoing process 
throughout the lifecycle. As data is analyzed, additional data is created. This new data 
can either be ancillary, supporting data or can be the primary research output, becoming 
more important than the original data. For survey data, the data resulting from statistical 
and/or text analysis processes could be considered ancillary or supporting data as it is 
used to support conclusions that are reported in published papers and can be recreated 
and verified with relative ease. For data that is longitudinal or is merged from many 
sources, the original data can be less important than the final integrated dataset.

Data creation and format
Each methodology has a set of requirements, which often dictates a set of data 

formats. These formats can be proprietary, syntactic standards, or community-based 
syntactic and semantic standards. A methodology may require a complex collection of 
data in multiple file formats of different types. For example, text analysis generally 
requires one or more input text files in .txt (a syntactic standard) or .xml formats (either 
syntactic standard or a community standard). The output of the analysis can be 
additional .txt files, new .xml files, Excel (proprietary formats as either .xls or .xlsx) 
or .csv files (syntactic standard) for word counts and other simple statistics, or statistical 
proprietary formats such as .sav for SPSS or .sd for SAS (both proprietary).  
Observational methodologies produce data in a wide variety of formats, such as TIFF 
and JPEG for microscopy, various MPEG formats for video and audio, and generic 
types of data formats such as text files and databases. Methodologies that use 
instruments can generate data in instrument-specific propriety formats as well as 
community semantic and syntactic standards such as FITS1 (for astronomical data), 
NetCDF2 (for array data), SEG-Y3 (for seismic data), ROOT4 (for high energy physics), 
and FASTA5 (for protein sequences).

Data Creation and Context
Contextual information generated during the process of creating research data 

includes data sources, instrumentation used, instrumentation settings, experimental 
conditions, software used, software configurations, and samples used. Both data 
generating and data gathering modes create contextual information. At this stage of the 
lifecycle, much of this data is implicit, captured in configuration files, lab notebooks, 
text documents, human subjects testing application forms, and file names. In a small 
number of domains using specific methodologies, contextual data is captured as data is 
generated and stored in a standard format.

1 The FITS Support Office at NASA/GSFC: https://fits.gsfc.nasa.gov/ 
2 NetCDF: https://www.unidata.ucar.edu/software/netcdf/docs/ 
3 USGS Seismic Data Format: https://pubs.usgs.gov/of/2001/of01-326/HTML/FILEFORM.HTM 
4 ROOT Data Analysis Framework: https://root.cern.ch/about-root 
5 Basic Local Alignment Search Tool (BLAST): https://blast.ncbi.nlm.nih.gov/ 
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Data creation and data management
As data is created, data management events involve naming, organizing, saving, and 

backing up the research data. Determining a standard practice for file naming and file 
organization is an important task that can help researchers be more efficient and have 
better control over the research data. Contextual data also needs a set of standard 
practices for capture and safe storage. The choices made at data creation are among the 
most important data management decisions in the lifecycle, as they affect the long term 
preservation of the original research data, newly created or integrated data, and 
contextual data.

Quality Control

As data is assembled via the multiple modes and methodologies described above, 
researchers invest significant amounts of time and effort to ensure the quality of their 
data and of their science. Quality control, the processes by which data is determined to 
be accurate, complete, and current (Batini and Scannapieco, 2006), is the second step in 
the Digital Research Data Lifecycle model (see Figure 4).

Figure 4. Quality Control Process.

Ensuring data quality involves developing and applying processes to combine data 
from numerous sources, to manipulate data to reconcile different scales of 
measurement, and to validate the content. The researchers in this study indicate that a 
substantial amount of time is spent on quality control in their scientific research. The 
researchers were asked to indicate the amount of time that they spent on quality control 
process for a recent project (see Table 3). The responses fell into rough thirds: one third 
spent less than 40 hours; another third spent between 40 and 120 hours and the final 

third spent over 120 hours of effort on quality control. Both scientific domain ( c35
2

 = 

104.443, p < .001) and size of lab ( c10
2

  = 31.914, p < .001) are significant, while 
funding source is not significant (F4,724 = 8.927, p = .604). By domain, researchers in 
geoscience and biology were much more likely to have spent over 120 hours on quality 
control for their chosen project while researchers in physical science and mathematics 
were more likely to have spent less than 40 hours on quality control. Individual 
researchers and those in mid-sized labs were more likely to spend less than 40 hours, 
while those in large labs were more likely to spend more than 80 hours on quality 
control. 
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Table 3. Effort expended on quality control for a recent project.

QC Time Responses
(736)

Percentage

Less than 40 hours 226 31%
Between 40 and 60 hours 76 10%
Between 60 and 80 hours 77 10%
Between 80 and 120 hours 68 9%
More than 120 hours 241 33%
Other 48 7%

The researchers were asked about the quality control processes that they 
implemented (see Table 4). The 711 researchers who answered this question used an 
average of 2.4 processes per project including data normalization, cleaning, integration, 
and calibration. Data normalizing (resolving scale issues, reformatting for consistency, 
etc.) was used by 67% of the responders; data cleaning (fixing errors) was used by 59% 
of the responders; data integration (merging data from several sources) was used by 
63% of responders, and instrument calibration was used by 41% of the responders.

Table 4. Quality control data processes.

Data Processes Responses
(1725)

Percentage
(of 711)

Data normalizing (resolving scale issues, 
reformatting for consistency, etc.) 477 67%

Data cleaning (fixing errors) 423 59%

Data integration (merging data from several 
sources) 447 63%

Instrument calibration 292 41%

Other 86 12%

Quality control processes were highly sensitive to scientific domain. Biologists and 
geoscientists are more likely to use more types of process in their research. Biologists 
are more likely to normalize, clean, and integrate data from multiple sources but not to 
calibrate instruments. Geoscientists are more likely to clean, integrate data, and to 
calibrate instruments. Social scientists are more likely to clean and integrate data but not 
to calibrate instruments. Physical scientists and engineers are more likely to calibrate 
instruments but not to clean or integrate data.

Each of the quality control processes was sensitive to the size of lab as well. 
Researchers who work independently are less likely to use data quality processes than 
those in large labs. Funding source was significant to only one of the data quality 
control processes, instrument calibration (F4,785 = 3.584, p = .004). Those researchers 
who are exclusively or primarily grant funded are more likely to calibrate instruments.

Scientific quality and quality of data are tightly coupled. A large majority of 
researchers (88%) correlated quality control with the quality of their research. Without 
confidence in the data, there can be no confidence in the results. Determining the 
criteria by which to judge the quality of the data is a dynamic process that depends on 
the nature of the project, the nature of the data, and the specifics of the instruments or 
the methodologies that were used to create the data. Researchers in domains that use 
standardized instruments, regularized processes, and quantitative data are often able to 
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develop explicit sets of quality criteria that can be reusable. In domains that are not data 
intensive or that use qualitative data, researchers are generally not able to or have not 
perceived the need to develop explicit criteria.

Quality control is a cycle within the larger lifecycle. Scientific quality requirements 
inform the data quality criteria, which inform the processes that are required to ensure 
the quality of the data, which takes time and resources, which influences the process of 
the science. This cycle interacts with the data creation step. As either raw or analyzed 
data is created via the multitude of methodologies, quality control processes may be 
performed. These processes are in themselves cyclical. Quality control processes can 
require data format conversions that then generate additional contextual metadata. The 
number of quality control processes used increases the number of potential format 
conversions, the amount of contextual metadata generated, and the amount of time 
invested.

Quality control and format
Quality control processes may require format conversions. The original data files 

may need to be converted into a new format that the program or process requires, and 
the output of the program or process may be in yet another format. Examining a simple 
quality control process can highlight this phenomenon. For example, imagine that a 
researcher has tabular data stored as a comma separated values (.csv) file and wants to 
use SPSS to provide descriptive statistics to check for data validity. The researcher 
would load the .csv file into SPSS, which would automatically convert the data into the 
SPSS internal database format (.sav). Data can be manipulated, modified, and saved in 
SPSS, creating a .sav file. As the researcher executes each of the statistical processes, an 
opaque, proprietary statistical output file is produced (as an .spv or .spo file). In SPSS 
version 24, this proprietary output file can be exported in a number of other formats: 
Excel (.xls), HTML (.htm), Portable Document Format (.pdf), Text (.txt), Microsoft 
Word/RTF (.doc), and Microsoft PowerPoint (.ppt) (IBM, 2016).

Some of the quality control processes are ends to themselves; that is, the assessment 
of quality is captured in the output from these processes and is not used in further 
processes. That is likely to be the case in the simple example above. Other quality 
control processes are part of a series of steps that cleans, massages, augments, filters, 
and collates data. These processes in series can create a number of files in different 
formats, each of which can require a conversion to another format for further processing 
or into the final format.

Quality control and context
Contextual data is generated throughout the quality control cycle. This contextual 

data includes quality control criteria, domain and workgroup norms, processing 
algorithms, determinations of statistical outliers, and a wide variety of other decisions, 
both explicit and implicit. The amount of contextual data generated is directly related to 
the quality control processes. As the number of quality control processes increases, the 
amount of contextual data increases. This is only logical. Each process has a motivation 
(remove outliers, reconcile scale), a specific set of rules (remove those data points that 
are greater than a specific standard deviation or convert from zip code level data to state 
level), and an instantiated implementation (a set of parameters for statistical program 
such as SAS or SPSS, a program developed for this specific purpose, a Schematron6 
plugin to an XML editor), each of which produces and/or contains contextual data.

6 Schematron: http://schematron.com/ 
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Much of this data is implicit, stored in software configuration files, software source 
code, directory structures and file names, lab notebooks, documentation, other text 
documents, and in the individual researcher’s memory. Some of the data is explicit, 
stored in databases or spreadsheets. For a small number of specific domains, the data 
and contextual data are stored in a community syntactic and semantic standard format.

Quality control and data management
Quality control processes can create multiple new files in a variety of formats, all of 

which require data management. Determining which of these files to keep is a crucial 
data management decision. Researchers lack confidence that they know which files will 
be important over time.

Maintaining control over the multiple versions of files produced in quality control 
processes is a function both of data management and context management; it involves 
understanding and documenting the relationships between revised, derivative, and/or 
intermediate datasets. As a function of data management, version control requires that 
the datasets have clear organization and file naming as well as the obligatory safe 
storage and adequate backup. As a function of context management, version control 
requires that the transformations from an original dataset to a derivative file to an 
intermediate processed file are documented and that this documentation is available to 
the data manager. As the data is managed primarily by researchers (57%) and/or 
graduate students (38%), data management at this level can be a significant barrier to 
preservation. The complexity, the amount of time required, the lack of tools to automate 
these data management tasks, and lack of standard practice increase the probabilities of 
errors.

Content

Through the research process, data becomes content as it has value, form, and meaning 
(see Figure 5).

Figure 5. Data to Content Process.

For this study, content is defined as the principal, significant intellectual and 
informational substance of the research process. For data to become content, the 
scientific process must have added value to the data making it unique in some way that 
extends human knowledge and that adds to the scientific record. For data to become 
content, it must have a form that is readable, renderable, and usable; it must be 
understood within its context; it must have metadata that describes its meaning. As with 
the other stages in the Digital Research Data Lifecycle, this is not a single event step. 
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The transformation from data to content can be complete for some data while other data 
is still in the data creation state and yet other data is in the quality control stage.

Uniqueness is an important assessment criterion for preservation and has been 
viewed throughout the literature as binary – data is unique and should be preserved; or 
data is derived, can be recreated, and does not need to be preserved (Gray et al., 2005; 
Henty et al., 2008; Key Perspectives, 2010; Lord and McDonald, 2003; Lyon, 2007).

The researchers in this study rejected the simplistic binary assessment of uniqueness 
(unique or not unique) as described in the literature. The researchers were asked to 
choose from a list of possible options that were developed from the responses from the 
preliminary study (see Table 5). The 747 respondents to this question confirmed the 
preliminary study’s conclusion that uniqueness is a multidimensional construct; in fact, 
researchers considered their data to be unique for multiple reasons. With 1,794 
responses by the 747 researchers, there was an average of 2.3 responses per researcher. 
In additional to the traditional definition of uniqueness (data is observational or 
experimental), the researchers in this study considered their data to have unique features 
such as integrated analysis, uniformity and quality, metadata, or a longitudinal 
perspective.

Table 5. Uniqueness of Data.

Uniqueness Responses
(1725)

Percentage
(of 747)

I have observation data that is unique 338 45%

I have experimental data that is unique 370 50%

Data is unique due to the quantity and quality of 
the data 312 42%

Data is unique due to the level of uniformity and 
integration of the data 132 18%

Data is unique due to the longitudinal nature of 
the data 136 18%

Data is unique due to the added value of metadata 118 16%

Data is not unique and can be recreated from the 
original sources 113 15%

Data is unique due to the integration of unique 
analysis into the data 117 16%

Not sure how to describe the uniqueness of this 
data 107 14%

Other 51 7%

Researchers indicate that uniqueness is related to the value of the data which can be 
attributed to the contributions of the scientific process. Researchers can add value to 
existing data that makes the data unique; through the research process, data becomes 
unique because of the quantity and quality of the data, the level of uniformity and 
integration of the data, the breadth of data, longitudinal nature of the data, the 
integration of analysis within the data, and the added value of metadata. Research that 
creates longitudinal data, research that collects and collates data from different sources 
to create a new and integrated dataset, research that integrates analysis into the data 
(such text encoding and geocoding), and research that adds context to existing data all 
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add value to data. The researchers disagree with the proposition that the processing to 
create uniformity or integration is simple computation. Much of this work is done by 
hand, requires intellectual input, and becomes irreplaceable. This data cannot be easily 
recreated; the processes that create this data cannot be easily rerun.

Content and format
All throughout the Digital Research Data Lifecycle, the construct of format, the 

representational expression of data, is cumulative; that is, the format decisions made at 
the beginning of the research cycle have implications at the later stages. As the data 
becomes content, many of the decisions made previously have implications for the 
longevity and the re-usability of the content.

Researchers in this study overwhelmingly use undocumented or proprietary 
standards (79%). That is, the most frequently used formats are either generic syntactic 
formats with no internal semantics to describe the data such as comma separated values 
format (31%) or are formats that are opaque, are commercially owned, and have strong 
commercial software dependencies such as Microsoft Office formats for Word or Excel 
(48%). Both of these types of formats present significant barriers to preservation. 
Generic syntactic formats have obvious advantages during the research process, as they 
are flexible, allowing virtually unlimited numbers and types of fields and do not require 
specific content typing such as date formats, controlled vocabularies, and decimal 
precision. These flexible features that are so useful in research mean that the context for 
the data content is external to the data; the meaning of individual fields, the rules by 
which these data elements were created, are not captured semantically within the file. 
These generic syntactic formats create barriers to preserving the meaning of the data.

The commercially owned, opaque formats can also provide obvious benefits during 
the research process. The commercial software packages used to create data in these 
formats have powerful features, such as automatic replication of data, strong automatic 
data typing, highly useful built-in functions such as statistical formulae, data 
visualization, spell checking, tables, embedded images, and many others. However, 
many of these features produce data in proprietary internal structures. These opaque, 
proprietary formats create barriers to preservation as the data is locked in undocumented 
formats that require specialized, commercial software to render and process. The 
software may be part of ubiquitous computing platforms that are available on every 
computer used by the researchers; thus the researchers assume these proprietary formats 
will always exist and be available.

Content and context
In order for data to be transformed into content, its meaning and its relationship to 

its environment must be codified; that is, the contextual data that was generated 
throughout the process must be processed into metadata. This process of generating 
metadata from context is a transformation in itself, creating a structured representational 
format from scattered bits of information. This transformation is an imperfect process. 
This research shows that researchers face major obstacles to creating preservation 
quality metadata: finding appropriate standard metadata formats, mapping the 
contextual data, and allocating the resources required to create the metadata.

In general, researchers do not use domain- or community-developed semantic and 
syntactic metadata standards; less than 5% of researchers in this study report using such 
standards. The possible reasons for this low adoption rate of standards are many: it is 
likely that many domains do not have standard metadata formats; it is possible that 
researchers are unaware of existing metadata standards; it possible that the specific 
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research of participants in this study do not fit the existing standards; it is possible that 
the lack of metadata tools prohibit adoption; or the effort to use an existing standard 
exceeds perceived benefits. The lack of standard metadata formats use, as a method to 
encode the meaning, context, and structure of the data, is a significant barrier to 
preservation.

For a small number of researchers in domains that use specific instrumentation and 
standards, contextual data is captured as data is generated and stored in the community 
standard format. For these researchers, creating metadata is not the barrier to 
preservation that others face. However, if these researchers use multiple methodologies 
or instruments that do not produce standard output, they will have the same issues as 
other researchers: identifying, locating, and deciphering their contextual data to create 
metadata. For some research projects, the amount of effort is measured in multiple 
months of effort or in numbers of full time staff. Funding for additional resources for 
metadata creation is sparse. In general, researchers are reluctant to spend their research 
funds on metadata specialists. Only 20% indicated that they would be willing to spend 
research funds on a metadata professional. The researchers expressed concerns about 
their ability to use the specialists effectively, sufficient work to keep a full time person 
occupied, the cost of transferring complex, domain specific knowledge, and the 
willingness of agencies to fund metadata enhancements.

Content and data management
Content is the result of good data management throughout the lifecycle, when the 

data and the context are available, are knowable, and are viable. The decisions made 
during the previous steps are now visible. Are all of the necessary data files available? 
Are they intact without errors? Are the contextual data files (both digital and analog) 
sufficient, available and viable? Are the appropriate intermediary files available? Is the 
researcher assured that these files are the “right” ones, the most current ones, the most 
accurate ones? If the researcher can answer these questions affirmatively with 
confidence, data management has not been a barrier to this point. However, the data 
management barrier has not been eliminated. Data management will be an ongoing 
process over time even as the data becomes part of a data collection.

Data Collections

Making arrangements for the final disposition of data is the last step of the Digital 
Research Data Lifecycle model. As defined by the Merriam-Webster dictionary (2011), 
disposition means an orderly arrangement or the transfer of administrative control to 
another. Within the Digital Research Data Lifecycle, the construct of data collections 
describes a taxonomy of the final disposition of research data: research collections, 
community collections, and reference collections (NSB, 2005) (see Figure 6). Research 
data collections refer to the output of a single researcher or lab during the course of a 
specific research project. Community data collections generally serve domain or other 
well-defined areas of research. At the highest level, reference data collections are 
broadly scoped, widely disseminated, well-funded collections that support the research 
needs of many communities (NSB, 2005). There is little evidence that researchers 
individually or as communities identify themselves in this taxonomy or use these terms 
to describe their own activities and repositories (Kowalczyk and Shankar, 2011). 
Nevertheless, the framework provides a useful way of describing the functions, 
structure, and organizational dimensions of data collections and the resulting changes 
that arise from scaling up and expanding the scope of use. While this typology is useful, 
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its simplicity can mask the complexity of the repository landscape; many repositories 
could be classified in multiple categories.

Figure 6. Data Collections.

Research collections are by far the most common disposition of data (72%). 
Research collections are primarily supported by the individual researcher on removable 
media such as media as CDs, DVDs, or hard drives. As well, research collections can be 
supported in a lab or work group environment. Individual researchers are able to 
transfer the control of their data to a lab-supported data archive (35%). The research lab 
takes responsibility for managing the data storage environment but generally does not 
commit to long term preservation. Institutional data archives can also support research 
collections. These archives take responsibility for data management, long term 
preservation, and ongoing access. In this study, 16% of researchers indicate that they 
use their institutional repository to store their data at the end of a project. A small 
number of researchers have begun to use commercially available storage services such 
as Amazon and Google for their research collections. These services may provide a 
stable technology base that provides online access for a very low cost. However, these 
cloud services can be based on proprietary systems with opaque management and 
preservation with dubious terms of service that may cede ownership of stored 
data/documents to the commercial entity (Instrumental, 2013; National Archives and 
Records Administration, 2010).

Community (13%) or reference data collections (14%) serve as the final data 
disposition for a minority of researchers in this study. Researchers have a variety of 
motivations for contributing their data to these collections including funding agency 
mandates, (25%) journal mandates (16%), personal initiative (28%), and standard 
practice in research work group (25%).7

Data collections and format
In the Digital Research Data Lifecycle, format conversions occur throughout the 

research process. The type of data collection determines the future format conversion 
scenarios. For research collections, the most likely scenario is stasis; that is, data in 
research collections will remain in the existing formats until a new use for this data 
forces conversion. For community and reference collections, future format conversions 
will be the responsibility of that data collection. The repository managers and the 
community will determine the necessity of format changes, upgrades, and conversions.

7 For a fuller discussion of the final disposition of research data, see Kowalczyk, S.T. (2014).
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Data collections and context
Creating metadata and depositing the data in repositories have been seen as barriers 

to preservation. There have been concerns with the usability of the repository systems, 
the lack of tools, and the amount of effort required to create metadata and to deposit 
data. For all types of repositories, researchers in this study who used repositories found 
deposit processes to be easy to use (66%). This implies that the amount of time and 
effort was reasonable for these researchers. However, the reference and community data 
collection repositories used by participants in this study are heavily concentrated in the 
biological and geosciences, many of which use data formats with integrated metadata; 
that is, the contextual data is embedded in the data format when the data is created. It is 
possible that the nature of the data that these repositories store makes the deposit 
process less burdensome. It is also possible that motivations to deposit influence 
perceptions of ease of use. Researchers who have a strong research culture of repository 
use or those who have strong personal motivations to use data repositories may have a 
higher threshold of patience, thus rating deposit processes as easier than those who are 
externally motivated to use repositories.

Data collections and data management
As with the other components of the data collection construct, data management is 

bifurcated: issues with research collections are different from the issues with 
community and reference collections. The repository services of community and 
reference data collections assume the responsibility for data management upon data 
ingest. The technology and data management practices of these repository services are 
generally opaque, and thus claims of preservation services are difficult to verify 
(Kowalczyk and Shankar, 2011). Despite the opacity of the services, researchers are 
using these services with the expectation of persistent archiving and preservation.

Research data collections, the output of a single researcher or lab, have ongoing data 
management requirements, such as regular backups, offsite backup storage, and ongoing 
documentation. The probability of long-term data management for research collections 
is low when the ongoing responsibility lies with an individual researcher or graduate 
student. Individual researchers are focused on their current research, and graduate 
students are short-term resources with little motivation or few opportunities for 
knowledge transfer of data management requirements to the next cohort. When an 
individual researcher has department-level support for data management, the probability 
for ongoing archiving of the research data collection increases but only for the duration 
of the researcher’s tenure. If or when a researcher leaves the department, the data 
management tasks once again become the responsibility of the researcher, assuming that 
the researcher has retrieved and taken possession of the data. Individual researchers may 
have an option to deposit their data into an institutional repository. An institutional 
repository often has some characteristics of a community collection, such as ongoing 
data management; however, the researcher cannot presume that data format migration 
will be part of an institutional repository’s services. That responsibility may still remain 
with the researcher. Research data collections of large labs may have additional data 
management resources available: more funding for staff, additional graduate students, or 
more funding for storage. In large labs, data management can be the responsibility of 
the group rather than the individual researcher. Thus data maintained by large labs may 
have a higher probability of persistence over time.
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Limitations of this Study

This study is intended to be a broad-based survey of research data practices. The sample 
frame was based on recent National Science Foundation grant awardees. Although there 
was broad-based participation across geographic area, institutions, and domains, the 
sample was skewed toward high level, established researchers in the U.S. The primary 
attempt to broaden the participation, a request to pass the survey on to others, was less 
than successful with only 6% of respondents outside the original sample list. Having a 
sample with researchers with different roles, such as graduate student or post-doc, 
would provide a more balanced view and perhaps more generalizable results.

Discussion

The Digital Research Data Lifecycle is a complex interaction of content, formats, 
context, quality control, data collections, and the technical infrastructure of the 
researcher’s home institution. It is, like other lifecycles, a visual and conceptual 
representation of a set of organic processes and stages. Lifecycles are a useful way to 
depict digital curation as they can describe the process of creating, processing, 
maintaining, and sharing data. The research behind the various data lifecycles have each 
focused on specific issues. The lifecycles can represent the repositories’ view of the 
process; or the lifecycle can represent a research domain or the needs of a specific 
project or lab. Each lifecycle is the response to a specific set of research questions, a 
specific problem that needs to be addressed, and/or a specific community of users. The 
Digital Research Data Lifecycle depicts the antecedents and the barriers to preservation 
within the research process.

Research is not a linear process. Within a single project, a researcher could have 
data in any or all of the stages simultaneously. Within each of the stages of the lifecycle, 
the implications and impacts of the major components change: format in data creation 
has different implications from format in the quality control stage, which has different 
implications from format in the final stages.

Barriers to Preservation

This research has identified a set of antecedents to preservation. These antecedents – 
data management, contextual metadata, format, and preservation technologies – can 
become barriers to preservation when researchers do not have access to appropriate 
resources. Data management, a set of skills and technologies required to ensure the safe 
keeping of data, is primarily the responsibility of the individual researcher, as 
institutions do not generally provide data management support to researchers. Creating 
metadata from the contextual data is a time-consuming task that is inadequately staffed 
and funded; however, researchers are unconvinced that external resources, such as data 
librarians, would help. Researchers are concerned about both the expense of domain 
knowledge transfer and the effort to manage the workflow. Little of the data created by 
researchers use syntactic and semantic community or domain data standard formats, 
making this data more difficult to use and preserve over time. Preservation technologies 
are not used frequently by the researchers in this study. The cause of this low use was 
not explored in this study but warrants further investigation. Although the 
responsibilities for the antecedents to preservation rest primarily with the researchers, 
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institutions and funding agencies can develop policies, services, training, and systems to 
encourage preservation as data is created.

Data Quality Control and Scientific Quality

This study showed that there are two very distinct understandings of quality: the quality 
of the science and the quality of the data. The scientific process has a well-established 
quality control mechanism in peer review. Data quality has no such established, 
predictable, and vetted process. Data quality control is often an ad hoc set of processes 
designed to ensure that the original data is correct as well as normalizing the data to 
allow accurate merges from disparate sources and to reconcile different scales. There is 
growing concern that data quality is not as fully transparent or integrated into the peer 
review process as it should be to validate the quality of the science.

Uniqueness
An important contribution of this research is the reevaluation of the preservation 

assessment paradigm of uniqueness. The literature indicates a binary judgment of 
uniqueness: data is unique and should be preserved; or data is derived, can be recreated, 
and need not be preserved (Gray et al., 2005; Henty et al., 2008; Key Perspectives, 
2010; Lord and McDonald, 2003; Lyon, 2007). The results of this research study show 
that uniqueness is more complicated than previously thought. Scientists in the study 
described multiple ways in which data could be considered unique. The first is that the 
nature of the data is unique: the data is of an observation of a singular nature or the data 
is from an experiment with an exact preparation, processing, and scientific goal. Data 
can also be unique because additional value was contributed by the researcher through 
the scientific process; that is, the data is unique because of the quantity and quality of 
the data, the level of uniformity and integration of the data, the breadth of data, 
longitudinal nature of the data, the integration of analysis within the data, and the added 
value of metadata. The researchers disagree with the proposition that the processing to 
create uniformity or integration is simple computation. They perceive that their data is 
unique because of the processing, normalizing, merging, and cleaning.

File formats and standards
File formats for both research data and contextual metadata are a major component 

of the Digital Research Data Lifecycle. Format is the structured representation of the 
data and is used by programs to ready, process, and render the data. Without knowledge 
of the file format, the data is unusable. Thus, format is a significant predictor of the 
potential for preservation.

Only a small percentage of researchers use syntactic and semantic domain- or 
community-based standard file formats for their research data and/or contextual 
metadata. Many researchers view widely available, commercial, opaque, and 
proprietary file formats as standard. The ubiquity of these formats misleads researchers 
into assuming their long-term viability and availability. Other researchers confuse 
generic computing syntactic standards such as comma separated values (.csv), SQL 
based databases, and text encoding standards (ASCII) as standard formats. These 
formats do not have embedded data element descriptors, the lack of which results in the 
inability to understand the meaning of the data and to process the data; without 
accompanying documentation about the internal structure and meaning of the elements, 
the data can easily become useless. Thus, the lack of syntactic and semantic domain or 
community based standard file formats is a significant barrier to preservation.
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Conclusion

Curating, preserving, and providing access to scientific data is vital to the health of the 
scientific enterprise (Iwata, 2008; Rusbridge, 2007). This research used a mixed 
methodology approach to develop a life cycle model for the preservation of research 
data that accounts for both the antecedents and barriers to preservation. By creating 
quantitative measures, this study provides specific, numeric descriptions of current 
research practices including data quality control, categories of the uniqueness of data, 
file formats, the final disposition of data. Many of the results of this study expand the 
current understanding of research practices. This research provides new insights into the 
workflow of digital science process by quantifying the current state of digital science 
data management and describing the multiple environments in which data is created, 
used, saved, and preserved.
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