
IJDC  |  General Article

Navigating Unmountable Media with the Digital Forensics

XML File System

Alexander Nelson

National Institute of Standards and 

Technology

Alexandra Chassanoff

Massachusetts Institute of Technology 

Libraries

Alexandra Holloway

Jet Propulsion Laboratory /

California Institute of Technology

Abstract

Some computer storage is non-navigable by current general-purpose computers. This 

could be because of obsolete interface software, or a more specialized storage system 

lacking widespread support. These storage systems may contain artifacts of great 

cultural, historical, or technical significance, but implementing compatible interfaces 

that are fully navigable may be beyond available resources.

We developed the DFXML File System (DFXMLFS) to enable navigation of arbitrary 

storage systems that fulfill a minimum feature set of the POSIX file system standard. 

Our approach advocates for a two-step workflow that separates parsing the storage’s 

file system structures from navigating the storage like a contemporary file system, 

including file contents. The parse extracts essential file system metadata, serializing to 

Digital Forensics XML for later consumption as a read-only file system.
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Introduction

Since their inception, computer storage systems have had a user interface with a fixed 

primitive set, including the named file that references addresses for file content. 

However, despite this stable conceptual base, accessing files on antiquated storage 

systems is not always possible. Hardware and software age and fall out of support as 

operating system design progresses, making some storage uninterpretable. Specialized 

storage systems (e.g., game consoles like the Xbox 360) may decline to implement 

widespread support for commercial or consumer operating systems (Nelson, Steggall, 

and Long, 2014).

1

In this paper, we address the problem of treating the data of an outdated or 

uncommon computer storage system like the data of a contemporary file system. 

Contemporary computer operating systems have code to attach, or ‘mount’, current file 

systems to their storage namespace, enabling users and programs to walk the file 

system, and read and write files. If a file system is not supported in the operating 

system, software must be developed to provide access to its files and their metadata. 

Typically, that software bundles logic to parse the storage with other interfacing 

software, from custom navigation shells

2

 to full original file system kernel modules. 

Unfortunately, in these approaches, functionality can be hindered or prevented due to 

ongoing maintenance requirements and lack of implementation resources. 

We present a file system called the Digital Forensics XML File System 

(‘DFXMLFS’), and an accompanying workflow that normalizes access to storage 

systems, requiring only the development of a storage system parser. The key element of 

our approach is separating file system parsing from file system interfacing. We provide 

background on why this approach is possible, historically and technologically. We 

describe scenarios in which this practice can be beneficial and critical. Finally, we 

characterize essential components and provided examples to assist motivated developers 

with the broader goal of enabling access to outdated or uncommon storage systems as 

economically as possible.

Background

File systems have grown feature sets from a core concept of hierarchical file 

organization. Some examples of features include full-disk encryption (e.g., APFS for 

macOS), data and metadata checksumming (e.g., ZFS for OpenSolaris), live system 

repair (e.g., ZFS), and quota groups (e.g., Btrfs). Yet for the typical computer user, 

interaction with the file system and corresponding user needs have not evolved much 

beyond search and access capabilities. The POSIX family of standards from the late 

1980s defined a consistent user interface in terms of command-line functionality, 

including the way the user navigates the file system and the way that the file system is 

displayed (IEEE, 1988). Even with the popularization of graphical windowed 

1 Certain products may be identified in this document, but such identification doesn’t imply 

recommendation by the US National Institute of Standards and Technology or other agencies of the US 

Government, nor does it imply that the products identified are necessarily the best available for the 

purpose. 

2 Durno (2016) provides many examples of tools with custom file system interfaces. 
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environments, the feature set of file systems – particularly what is visible to the user – 

has remained largely the same (Reimer, 2008). Indeed, file system user interfaces have 

remained largely the same in the past 30 years or more (Ames, Maltzahn, and Miller, 

2008). Users typically have little knowledge or insight into file system level features 

such as journaling or data de-duplication; even with those advanced features, users may 

rely on file listings alone for organization and access.

As we increasingly make and accumulate our own streams of data on a variety of 

media, users may wish to examine specific file system features for different purposes 

and through a variety of methods. Digital archivists and forensic analysts share some 

needs for metadata features that have remained stable since near the beginning of file 

systems. For example, an archivist may wish to gather contextual information about the 

modification, access, and change (MAC) times of a file system to ensure provenance 

(Woods, Lee, and Misra, 2013).  A scholar may also wish to recover a file that 

previously thought to be deleted (Kirschenbaum, Ovenden, Redwine, and Donahue, 

2010). 

DFXMLFS is a FUSE (Szeredi, 2006) file system that leverages DFXML 

(Garfinkel, 2012) to separate the file system parsing and interface software. DFXMLFS 

is largely possible because of file systems’ long-lasting interface stability. It presents a 

navigable interface to robust file system metadata while also complying with a broad 

common denominator in contemporary storage interface requirements, such as adhering 

to the navigating and file-reading components of the POSIX interface (IEEE, 1988). 

The end result is the ability to navigate any hierarchical storage medium that has 

previously implemented the POSIX interface, even if the medium’s last living interface 

software lost support decades ago. Critically, the work required for this functionality 

restoration is significantly less per file system type, in comparison with updating an 

original implementation most likely tied to an also-obsolesced operating system. 

DFXMLFS joins two technologies to enable storage system access and demonstrates the 

benefits of adopting an in-common practice, following an in-common language 

specification. 

FUSE

Filesystem in Userspace (FUSE) (Szeredi, 2006) is a library that offers an alternative 

system for developing file systems. FUSE moves file system development from 

implementing a kernel module to instead writing userspace functions. This has aided the 

prototyping of many file system designs that were either experimental or better suited 

for userspace operations. The related work section will discuss some example 

alternatives to traditional hierarchical file navigation. 

DFXML

Digital Forensics XML (DFXML) provides a plaintext language for viewing file system 

artifacts. DFXML stores storage-forensic tool output, enabling capture and 

representation of file system metadata to ensure provenance, authenticity, and integrity 

of storage media (Woods, Chassanoff, and Lee, 2013). One objective behind its 

development was to automate some components of storage analysis that did not require 

access to the disk image (Garfinkel, 2009; 2012). For instance, timeline analysis and file 

signature recognition only need limited metadata from the storage system (file 

timestamps and content checksums), and only once. 
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DFXML is a sufficient manifest to enact full storage navigation and file extraction 

without needing to re-parse on-disk structures after the XML is generated. DFXML 

provides a vocabulary that supports the data necessary to create an in-memory file 

system tree, including file properties like name, path, size, times, data addresses, and 

checksums.

This is not the full extent of file properties that DFXML can capture, but it is 

sufficient for most file system navigation and content viewing needs. The Digital 

Forensics XML schema

3

 provides full documentation on the structure and other 

metadata fields in a DFXML file.

Note that in this paper, navigation and file extraction are two separate file system 

support objectives, that somewhat satisfy a partial ordering.  Navigating a file system 

requires being able to provide an illustration of the directory hierarchy, typically by 

parsing directory entry data structures.  Extracting file content requires additional 

supporting metadata, often provided as data addresses within the original medium.  

DFXML provides language constructs that can represent data locations, but few of the 

DFXML generators currently available produce file data locations.  Location metadata 

is among the most challenging to provide (Nelson et al., 2014), but this paper shows it is 

also an intrinsically rewarding implementation objective.

Related Work

FUSE and Alternate Approaches to Navigating Files

Some projects have taken an attribute-based approach to navigating files, including 

hierarchies like metadata query construction. For example, a virtual directory entitled 

“mp3” could filter an audio file collection down to MP3s, and another directory under 

that titled “bitrate_320kbps” further filter to select a certain bit rate. Folder 

hierarchies can also be used to organize parameterized experiment results, using 

directories to note parameter values used (Strong, Jones, Parker-Wood, Holloway, and 

Long, 2011). Navigating file sets by attributes carries several challenges in metadata 

identification and indexing (Ames et al., 2005; Parker-Wood, Long, Miller, Rigaux, and 

Isaacson, 2014), but can offer a useful alternative to fixed directory hierarchies when 

considering files with rich and consistent metadata.

It is possible to use FUSE as more of an intermediary layer to access another file 

system. The SSH File System (SSHFS) acts in the same way an NFS client does, 

‘mounting’ a remote system’s directory locally, but only requiring SSH access instead of 

an NFS server process to be actively exporting a share.

Normalizing Storage System Interfaces

Recovery of computer storage contents has several different levels of challenges. One 

challenge Nelson et al. (2014) identified in inspection of an uncommon file system was 

that several of the file system analysis tools made the design assumption that the input 

disk image was an image of the disk partition containing the file system. Unfortunately, 

storage analysis in forensic and curation processes typically begin with images of entire 

3 Digital Forensics XLM Schema: https://github.com/dfxml-working-

group/dfxml_schema/blob/master/dfxml.xsd 
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disks, which have a partition management format that further points to disk partitions. 

The game console file system Nelson et al. inspected also had a custom partition 

management system. They applied a subset of the same practice as suggested in this 

paper, but for the purpose of accessing file systems: a forensic tool would inspect the 

partition management system, and then present a FUSE- based file system, UPartsFS, 

that offered each disk partition as its own virtual file. This relieves file system analysis 

tools from needing additional logic to handle partitioning systems as well.

The present implementation of UPartsFS relies on a version of The SleuthKit 

(Carrier, 2003) modified to analyze this uncommon storage. UPartsFS could be 

modified to use an XML representation of partition tables, which would remove its 

reliance on a customized version of another tool’s code base. Then other tools can be 

used to recognize disk images, and output appropriate partition type and size metadata 

as DFXML. Switching to an XML representation for partition data would help integrate 

research from file type identification (Underwood, 2013). 

Current Access Strategies 

DFXMLFS offers one strategy to enable access to an uncommon storage medium that is 

unsupported by current operating systems. There are several other strategies also 

available today, listed in Table 1 in mostly decreasing order of implementation 

difficulty. 

DFXMLFS provides an alternative option, requiring a smaller base of programming 

experience. A forensic tool can be developed from scratch (or adapted from available 

source options) to parse a storage system and serialize the storage data structures as a 

metadata manifest in DFXML, instead of implementing a user interface. DFXMLFS 

then handles joining the tool’s output with a kernel’s file system interface, enabling 

standard file-listing and directory-walking interactions by mounting the DFXML file 

like any read-only medium. If data addresses or file extraction commands are included 

in the XML, the original disk image can also be provided alongside the DFXML to 

enable read-only file extraction. However, only some DFXML generation strategies can 

yield that level of supporting metadata. 

DFXMLFS Usage Workflow

The objective of DFXMLFS is to normalize navigation of arbitrary hierarchical file 

systems. DFXMLFS usage follows a parse–serialize–transport–deserialize workflow. 

Our workflow serializes file systems to DFXML as an intermediary, text-based format, 

and uses the FUSE framework to deserialize that text into a modern-acting file system 

in a later process – even on a separate system. The DFXMLFS program – the 

implemented FUSE interface – handles deserialization and user presentation. Usage of 

DFXMLFS is still a ‘workflow,’ because DFXMLFS does not come built in with a 

universal parser for all file systems. Each file system requires special-case handling, in 

many cases by whomever finds themselves with an uncommon storage system in hand. 

What is required most of that analyst is locating or developing the first of the workflow 

steps: a parser and serializer.
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Table 1. Strategies to enable file system interaction for uncommon storage media.  Note the 

latter three strategies also require an understanding of the file system’s design.

Strategy Pros Cons

Preserve in situ 

access, using 

original hardware

 Provides the original 

experience

 Entails maintaining the 

original devices

 There may be issues with 

exporting data (e.g., no file 

system interface in games 

consoles)

Virtualize or 

emulate the 

original system

 Offers nearly original-

device experience

 Can be provided as-a-

Service (Woods, Lee, 

Stobbe, Liebetraut and 

Rechert, 2015)

 Requires extensive knowledge 

of original hardware

 Efforts taken to preserve one 

system’s operational status 

don’t necessarily generalize

Implement or 

modernize a 

kernel module

 Allows a current host 

system using the chosen 

kernel to mount the storage 

device as normal

 Requires selecting a set of 

kernels to support

 Requires working knowledge 

of internals of the kernels 

chosen to receive development 

efforts

 Suffers from effort 

fragmentation – kernel 

modules not guaranteed to be 

portable (e.g., BSD vs Linux)

 Run-time parsing faults cause 

bad browsing user experience

Implement a 

FUSE file system

 Provides mostly same user 

experience as kernel 

module

 Removes kernel 

development knowledge 

requirement

 Run-time parsing faults cause 

bad browsing user experience

Extend, or design 

and implement, an 

independent 

forensic tool

 Tool can be written in the 

style of the implementer’s 

choice

 Parsing faults seen by 

analyst, not necessarily 

browsing user

 Development freedom comes 

with the need for a user 

interface (e.g., custom 

command-line shell, custom 

GUI)

 Non-standard storage 

interactions lead to fragmented 

user experiences
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Figure 1. DFXML-based workflow: The disk image is parsed for the metadata in its inodes and 

dirents. These are serialized into an XML tree with essential file system metadata, 

and the result is later de-serialized for user interaction. XML conversion and time-

separated de-serialization for display to the user are the core contribution of 

DFXMLFS.

Storage Parsing

A file system parser is a program that populates data structures of a file system API— 

nominally, the POSIX Virtual File System interface. At other points in this paper, 

instead of file systems, storage systems are referenced. A storage system is meant to 

entail some storage device or image that contains one or more file systems, organized 

by a partition system. A storage system parser has the additional step of parsing partition 

systems before parsing file systems. 

A file system parse will typically result in finding at least the following information: 

 File size;

 Timestamps, such as last modification, last metadata change, last access, and 

creation;

 File path from the root of the file system.

Normally, the kernel would also want some type of list of on-disk addresses of data 

blocks that store file and directory contents. However, this is not strictly necessary. A 

running file system process only needs to be able to respond sanely to a 

read(dest_buffer, offset, length, file_handle) system call, which 

only requires bytes yielded from a byte stream.

Serialization

Navigating serialized metadata may be best illustrated by observing directory listing 

information. For example, Figure 2 shows a recursive directory listing in a modern, 

POSIX-based file system. It is possible to construct a navigable file system from this 

information: the listing shows there are two directories with four named files, and their 

modification times. However, this text listing is not sufficient to view the file contents. 

To meet that objective, we turn to DFXML to represent usual file metadata users see, as 

in ls output, and data location metadata as well. 
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$ ls -lR .
.:
-rw-r--r-- 1 alex alex    377 Sep 13 11:09 Makefile
-rw-r--r-- 1 alex alex 244619 Sep 13 14:54 dfxmlfs.pdf
-rw-r--r-- 1 alex alex   1164 Sep 13 11:09 dfxmlfs.tex
drwxr-xr-x 3 alex alex    102 Sep  9 16:16 figures
./figures:
-rw-r--r-- 1 alex alex 72823 Sep  9 15:53 image001.png

Figure 2. A recursive directory listing. 

<fileobject>
  <filename>figures/image001.png</filename>
  <filesize>72823</filesize>
  <mtime>2016-09-09T19:53:42Z</mtime>
  <ctime>2016-09-09T20:16:16Z</ctime>
  <atime>2017-01-21T21:32:23Z</atime>
  <crtime>2016-09-09T19:53:42Z</crtime>
  <byte_runs>
    <byte_run
      img_offset="42949672960"
      fs_offset="41875931136"
      file_offset="0"
      len="72823" />
  </byte_runs>
  <hashdigest type="md5">fc9a9233...</hashdigest>
  <hashdigest type="sha1">86e2663c...</hashdigest>
</fileobject>

Figure 3. DFXML of image001.png from Figure 2. This illustrates output of a tool that 

provides data addresses. (Some content has been trimmed for print.) 

A DFXML document provides a stream of fileobject elements, optionally 

within volume elements for disk partitions. Figure 3 shows an excerpt of DFXML that 

would represent the graphic file from Figure 2.

Deployment

DFXMLFS is implemented and currently available.

4

 What is left to the interested digital 

curator or storage analyst is parsing and serializing the storage, either by finding a 

DFXML generator or developing one. A later section describes available generators, 

which can serve as working examples if code meeting the analysis objective is not 

available. First, we describe the implementation of DFXMLFS, so the user may 

understand what is needed to enable normal storage interaction. 

DFXMLFS Implementation

DFXMLFS joins two technologies that have focused on simplifying file system design 

and analytics, in order to implement read() and other calls that comprise a file system 

4 DFXMLFS Github repository: https://github.com/ajnelson-nist/dfxmlfs
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interface. DFXML’s Python support includes a library of Objects5

 which read and 

write XML documents and provide an object-oriented programming interface. 

DFXMLFS implements file system functions in the Python FUSE bindings (Szeredi, 

Henk, Delafond, James, and Epler, 2004) that are sufficient to expose a read-only file 

system to the user.

Figure 2 showed that with inode data extractable with the stat() command, one 

can populate all but file contents for an entire directory hierarchy. This information is 

often exposed by tools that implement a navigation shell. The more difficult challenge is 

in presenting file content. A DFXML generator has to provide one of two things: 

1. byte_runs elements for each file’s content

2. A command to use a tool to extract file content into a cache, to which the FUSE 

bindings can pass reading operations with regular system calls. 

There is a trade-off in the choice made for file extraction strategy. If individual 

extraction commands are embedded in the DFXML file, then file viewing is dependent 

on the original parsing tool being (1) present at navigation time, and (2) stateless in its 

execution. 

For contrast, one example of a stateful parser is the uxtaf tool (Ladan, 2007), a 

parser and navigation shell for XBox 360TM disk partitions. It maintains an 

‘environment’ file that tracks, among other things, the current working directory of its 

custom shell between shell calls (e.g., the file records the new current working directory 

on calling ‘cd’). Simultaneous calls to extract files from separate directories are not 

supported by such a model, meaning DFXMLFS would need to support a global read 

lock, to be acquired when a file is read. Another stateful parser, hfsutils (Leslie, 

1996), uses a single state file in the user’s home directory, making simultaneous access 

of multiple disks impossible. 

Alternatively, implementing byte_runs elements to report file content locations 

makes later file viewing independent of the parsing tool. byte_runs elements also 

make the tool’s results more comparable with file system differential analysis (Nelson et 

al., 2014). However, they require a fairly complete understanding of a file system’s on-

disk data structures, and if the DFXML generator is a tool extension, extensive 

understanding of the tool internals. 

For the purposes of DFXMLFS, the objective level of DFXML generation is to 

report byte runs, but this is near the end of a simplified spectrum of ‘feature 

completeness’ of a generator. This is an approximate order of levels of completion for a 

generator:

1. Identifying directories and files

2. Identifying directory and file timestamps

3. Reporting file checksums for fixity

4. Reporting byte runs

5. Reporting other non-essential metadata.

These were chosen as generator development milestones due to the various types of 

approaches that can be taken for implementation (with examples of each approach given 

5 Library of Python Objects: https://github.com/simsong/dfxml/blob/master/python/Objects.py 
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in a later section). All but the last can be used to fulfill ‘essential’ metadata roles a full 

file system implementation must typically fulfill (especially inode data and data block 

pointers).

Note that ‘essential’ here means essential to file system navigation and content 

extraction, though other use cases may have different priorities.  For example, 

ownership and permission information can be more important than byte runs in a 

security review procedure that audits roles.

Figure 4 shows a working example of DFXMLFS, mounting the results of a tool 

that generates byte_runs elements, hfs2dfxml (Dietrich, 2015). Because the data 

block references are encoded in the XML, this textual representation of Apple HFS file 

systems can be mounted on a system without any HFS parsers present, including the 

hfsutils suite that originally generated the XML. 

Versus File-Set Approaches

Another alternative to using DFXML or DFXMLFS is to simply provide as parser 

output the set of all files the tool could find, perhaps packaged as a compressed archive. 

As an alternative to providing a simple file set, the DFXMLFS approach offers some 

advantages, including: 

 Some timestamps, aside from modification time, cannot be preserved in an 

extracted file set. It could be important to an analysis to know what the original 

creation time of a file was, but that cannot be re-created for an extracted file, 

because the host operating system will overwrite that timestamp with the time of 

extraction – when the file was ‘created’ on the host file system (Grier, 2011). 

 A storage system that violates name uniqueness could cause files in an extracted 

set to be overwritten. DFXML provides a file metadata manifest that can detect 

name duplication.

 DFXML can be used to compare tool results at a finer metadata granularity than 

extracted files (Nelson et al., 2014) in part because some fields are difficult to 

preserve when extracted to a new host file system (e.g., rarely-implemented time 

stamps and extended metadata attributes that may not be supported in the 

content-presenting operating system).

 A polyglot storage system, such as a CD-ROM that presents two file systems for 

multiple operating systems while sharing data pointers (e.g., PC-Mac hybrid 

games from the late 1990s), would be more cumbersome to report as a file set 

without use of hard links.
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Figure 4. Screenshot of DFXMLFS mounting an HFS disk image with a supporting DFXML 

document. No HFS utility is used to mount the disk, but file content and metadata are 

available to the graphical file navigator – note there is sufficient information to 

populate a thumbnail from recognized file contents, and to report file size. 

Deleted content offers a presentation-time challenge for both the file-set and 

DFXML approaches. DFXML provides deletion-analysis capabilities that a file-

extracting tool could duplicate with a class of messages in its extraction log, but this 

induces another interface design to inspect the deleted content. If the end user wishes to 

see deleted content, both approaches would need to resolve issues with naming the 

deleted files in a way to avoid conflicts. A run-time option on DFXMLFS may offer 

more flexibility to the end user – like deleted-file renaming strategy choices – than 

having to rename files from a compressed archive. 

Potential Applications of the Framework

There are several usage scenarios that benefit from separating storage system parsing 

from navigation. 
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Viewing File Contents of Obsolete Storage

Digital curation is a practice that is likely to encounter storage systems that are no 

longer supported by current operating systems. For example, there are collections by 

artists who used early versions of Adobe Photoshop on Macintosh computers that only 

used the HFS file system (Dietrich and Adelstein, 2015). There are several challenges in 

curation at different levels of computing practice: given the device, reading the bytes; 

given the bytes, parsing the file system; and given the files, viewing or migrating their 

content. The problem of interacting with bygone user-level applications is out of scope 

for this paper, but is handled by some others with software emulation (Woods, Lee, 

Stobbe, Liebetraut, and Rechert, 2015). The DFXMLFS approach leans closer to data 

annotation and migration. 

Some curation exhibits only partially present computer storage contents to patrons 

(or students). One might not necessarily want to release file contents – e.g., file contents 

may require sanitization for privacy purposes – but it could be permissible for an exhibit 

to exhaustively list metadata. In this case, or if media are unavailable or yet 

unprocessed, the XML can be mounted and a user can navigate the hierarchy, noting file 

names, and then requesting files that are key to their interests. DFXML could also be 

used to highlight subsets of a file system for other reasons, such as by showing files 

added or changed since a prior known state of the same disk, found by differential 

analysis (Garfinkel, Nelson, and Young, 2012). 

Low-Bandwidth Retrieval Planning

Many applications of DFXMLFS focus on restoring functionality to storage devices at 

hand. However, it can also be used in prototyping or presenting alternate interfaces to 

data.  For applications in which the communication bandwidth is extremely limited, 

obtaining all of the file contents of a storage device may be impractical or impossible, 

while extracting metadata may be tenable. An example of such a domain is obtaining 

files from a device on another planet. 

The communication path from Earth to the Mars Science Laboratory (Curiosity) has 

a portion that can only transmit in the hundreds of bits per second (Brat, Rungta, and 

Venet, 2013). The decision process on which of up to 300,000 rover files called ‘data 

products’ to transmit back from the rover requires a prioritization queue system on the 

rover itself. Data products will have predetermined priorities at creation time, which can 

be changed by sending commands to the spacecraft. However, due to the relative 

positions of Earth, Mars, the rover, the orbiters, and the difference in time between an 

Earth day and a Martian day, human-in-the-loop planning and telecommunication asset 

scheduling sees latency of a full day or more. 

A full manifest of data products may be requested from the rover in order for 

operators to determine the state of on-board memory. Moreover, a delta-manifest may 

be requested more frequently for correlating changes in memory state, e.g., when items 

are created, deleted, or marked sent. These deltas are incorporated into a database 

consisting of all Earth knowledge of data products onboard the rover. Thus, the 

metadata for the rover’s data products is most often viewed as results of a database 

query. 

Another way that manifest or delta-manifest of data products can be navigated is as 

a file system. A generator can construct DFXML from the rover’s delta-manifest, or a 

combination of these manifests, illustrating file system changes over time. DFXMLFS 

could then render the reformatted manifest to a file browser, enabling operators and 
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scientists to browse the data product manifest in a similar experience to walking the 

rover’s file system. Some operations staff may benefit from the alternative usability 

experience of browsing, searching, filtering, and making sense of the file system 

contents, using this view to update the data product delivery priority queue. 

Contemporary, but Uncommon, Storage

Some storage systems are not intended for general use. For example, the XBox and 

XBox 360 game consoles used a custom variant of the FAT file system not used in any 

other computing systems (Nelson et al., 2014). That file system behaved much like FAT, 

but used custom data structures and a hard-coded partition management system. The file 

system received a partial kernel implementation for FreeBSD (Ladan, 2007), but 

otherwise was mostly accessed by either game consoles or forensic tools. DFXMLFS 

normalizes access to such specialized storage systems, albeit in a read-only fashion. 

Parsing Security

A forensic tool can pre-process a disk image to make the XML file, and then the XML is 

what is presented to the kernel Virtual File System layer. The original disk image is not 

presented to the VFS or kernel space. This provides a significant security benefit: if a 

storage system contains malicious constructs intended to attack vulnerable kernel code, 

a userspace program would not present the same attack surface. Additionally, if multiple 

parsers are used, an anti-forensic technique that attempts to evade an expected 

adversary’s parser may fail against alternate tools, and even highlight payload data with 

file system differencing.

Presentation Security

Content scrubbing and redaction is part of some digital archivist workflows. If an 

exhibit doesn’t intend to extract files from a disk image (e.g., because of wanting to 

preserve resource forks in an HFS image), a disk image can have sectors ‘white-listed,’ 

using the byte run information to blank out everything but sectors essential for file 

contents, an example of partial disk imaging (Grier and Richard, 2015). In contrast, 

DFXML has been used by others to blacklist files (Woods et al., 2011; Woods et al., 

2015). 

DFXML Generator Examples

There are several available open source DFXML generators. They demonstrate different 

approaches to parsing storage and normalizing the storage state, yielding different levels 

of completeness of essential file system metadata. On the sparser end of the spectrum, 

only directory and file names are reported – e.g., as derivable from a file manifest listing 

one file path per line. On the more complete end of the spectrum, content addresses (i.e., 

image offsets and run lengths) are included for files, meaning no forensic tools need be 

required on the navigating computers. The order of the approaches here roughly 

decreases in effort required to generate DFXML, while simultaneously increasing 

dependence on a storage parsing tool to be present at navigation time to let DFXMLFS 

provide file contents. 
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Forensic Tool APIs

Some forensic tools provide scripting or library support for using their parsing engine. 

The original DFXML paper (Garfinkel, 2009) introduced the tool Fiwalk as an 

extension to The SleuthKit, employing The SleuthKit’s internal bindings to direct 

storage parsing and report the results as XML. 

For digital forensic storage analysis tools that provide programmatic access to their 

parsing engines, it should be possible to produce DFXML given training or familiarity 

with the exposed APIs. For instance, the forensic tool EnCase provides a scripting 

engine with its own custom language. One user wrote a script in this language to use 

EnCase’s API to generate DFXML (Bourdon-Richard, 2014), including byte_runs 

elements.

Forensic Tool Injection and Extension

With some forensic tools, an API may not be provided for external code linking, yet it 

may be possible to extend software in any case. Nelson et al. (2014) extended two file 

system parsers

6

 to generate DFXML, by inserting generating functions and data 

structure support into the code bases.

If taking this approach, much can be learned from tool behaviors with debug print 

statements, such as what a tool believes are the addresses of directory tree data 

structures to name file references. Later, the logic making those debug print statements 

can be re-purposed to make DFXML instead – sufficiently complete to let DFXMLFS 

read the disk’s files without the (possibly customized) tool on the browsing system. 

However, care should be taken with this approach to not negatively affect the parsing 

routines as code is inserted.

Forensic Tool Output Parsing

Some storage forensic tools offer custom command-line navigation interfaces, 

producing output for every file. This kind of tool output can be parsed, converting un- 

or semi- structured text output into DFXML, but requires implementing a custom ‘shell 

script’ for what is a custom shell provided by the program. For instance, hfs2dfxml 

(Dietrich, 2015) scripts calls to the stateful shell provided by hfsutils (Leslie, 1996), 

parsing the text output with regular expressions.

This DFXML-generating approach may be a preferable alternative to modifying tool 

source code in some situations. However, if the tool does not provide addresses of data 

in any of its shell commands, then DFXMLFS cannot provide file contents. 

Userspace Consumers

Some DFXML generators do not perform any storage parsing, instead consuming 

storage state as the operating system presents it to the user. The Python script 

walk_to_dfxml.py takes the data of the stat structure and formats it into 

DFXML with the Objects.py library. walk_to_dfxml.py also generates hashes 

by reading file contents, but has no access to block pointers and thus cannot create 

byte_runs elements. Similarly, the hashdeep (Kornblum, 2008) family of tools 

6 The modified versions of the two parsers, uxtaf and py360, can be found at: 

https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/ 
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written in C++ produces hashes for sets of files, relying on the kernel to handle storage 

parsing. 

DFXML generated in this style, relying on the operating system to present storage 

contents, can be used to verify later that file contents are extracted consistently. 

However, beyond providing inode numbers and checksums, DFXML generated this way 

cannot further assist with file extraction if the storage parsing interface becomes absent. 

Such a DFXML file can be mounted and navigated, but attempts to read would receive 

‘Not-implemented’ error messages. 

Future Work

A library in the DFXML code base, Extractor.py, facilitates serving file contents 

using shell calls instead of byte runs. However, at the moment it is hard-coded to use 

The SleuthKit commands. Future development of Extractor.py, and an extension to the 

DFXML language, can standardize a <fileobject> child element that stores a file- 

reading script. It is likely this kind of an interface, instead of byte runs, will be 

necessary in many cases for some file systems because of features like transparent 

compression and encryption. Other forensic languages or frameworks, such as Hansken 

(van Beek et al., 2015), include a notion of a forensic derivation chain similar to the 

forensic path of bulk_extractor (Garfinkel, 2013), where one can specify that a 

file must be decrypted, uncompressed, XOR’d, and have any other transformations 

applied. This type of recursive processing functionality does not presently exist in the 

DFXML libraries at the time of this writing. 

Another benefit comes from DFXMLFS separating storage parsing from interfacing. 

DFXML created for one subject image and multiple independently developed tools can 

have its contents verified, or flagged for further scrutiny, from differential analysis. One 

file system has received a DFXML-based storage meta-analysis. If forensic file system 

parser users contribute DFXML generators for their own subject media, storage forensic 

analysis as a whole benefits from getting cross-examinable results. 

Conclusion

The DFXML File System enables access to storage system contents without requiring 

one to have knowledge of implementing an operational file system, in kernel space or 

user space. It reduces the challenge of bridging the end user to an uncommon storage 

device; instead, our workflow calls for a simple parse of on-storage contents and the 

generation of a text file. A digital curator, and ultimately an end-user, should not require 

kernel-level file system implementation training to simply view the contents of antique 

or uncommon file systems. The creation of DFXML generators for non-contemporary 

file systems lowers the barrier to the curation and forensic communities to read their 

own instances of those storage formats. 

Following the DFXMLFS workflow, only file system on-disk data structure 

knowledge is needed to navigate contents of an uncommon storage medium. 

DFXMLFS reduces the knowledge required to the more specialized and localized topic 

of the medium’s file systems. The parsing can be done with analysis tools of varying 

implementation quality, from lightly-tested, experimental code that re-formats 

debugging print statements or current tool output, to full-fledged kernel modules. 
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Formatting storage media contents into DFXML lets those contents be navigated like in 

their original setting, but separated in time and even space from the parsing process. 

The forensic and curation communities benefit from having several generators 

available for any one file system type. Taken together, independent implementations of 

storage parsers improve understanding of individual storage systems, different file 

systems’ specifications, and of the practice of storage parser testing. These are all 

benefits of decoupling parsing and navigation, and further of using an in-common 

representation of file systems that differ vastly in on-disk organization. If an archivist or 

investigator is faced with a storage system their current operating system cannot mount, 

DFXMLFS presents a lighter coding path to reading the storage like any other file 

system of today. 

Resource Availability

DFXMLFS is available on Github at https://github.com/ajnelson-nist/dfxmlfs. 
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