
IJDC | General Article

Navigating Unmountable Media with the Digital Forensics

XML File System

Alexander Nelson

National Institute of Standards and

Technology

Alexandra Chassanoff

Massachusetts Institute of Technology

Libraries

Alexandra Holloway

Jet Propulsion Laboratory /

California Institute of Technology

Abstract

Some computer storage is non-navigable by current general-purpose computers. This

could be because of obsolete interface software, or a more specialized storage system

lacking widespread support. These storage systems may contain artifacts of great

cultural, historical, or technical significance, but implementing compatible interfaces

that are fully navigable may be beyond available resources.

We developed the DFXML File System (DFXMLFS) to enable navigation of arbitrary

storage systems that fulfill a minimum feature set of the POSIX file system standard.

Our approach advocates for a two-step workflow that separates parsing the storage’s

file system structures from navigating the storage like a contemporary file system,

including file contents. The parse extracts essential file system metadata, serializing to

Digital Forensics XML for later consumption as a read-only file system.

Received 19 October 2016 ~ Revision received 23 January 2017 ~ Accepted 23 january 2017

Correspondence should be addressed to Alexander Nelson, 100 Bureau Dr., MS 8930, Gaithersburg, MD 20899.

Email: alexander.nelson@nist.gov

An earlier version of this paper was presented at the 12

th

 International Digital Curation Conference.

The International Journal of Digital Curation is an international journal committed to scholarly excellence and

dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the

University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution

Licence, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation

2017, Vol. 12, Iss. 2, 309–326

309
http://dx.doi.org/10.2218/ijdc.v12i2.581

DOI: 10.2218/ijdc.v12i2.581

http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://www.ijdc.net/
mailto:alexander.nelson@nist.gov

310 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Introduction

Since their inception, computer storage systems have had a user interface with a fixed

primitive set, including the named file that references addresses for file content.

However, despite this stable conceptual base, accessing files on antiquated storage

systems is not always possible. Hardware and software age and fall out of support as

operating system design progresses, making some storage uninterpretable. Specialized

storage systems (e.g., game consoles like the Xbox 360) may decline to implement

widespread support for commercial or consumer operating systems (Nelson, Steggall,

and Long, 2014).

1

In this paper, we address the problem of treating the data of an outdated or

uncommon computer storage system like the data of a contemporary file system.

Contemporary computer operating systems have code to attach, or ‘mount’, current file

systems to their storage namespace, enabling users and programs to walk the file

system, and read and write files. If a file system is not supported in the operating

system, software must be developed to provide access to its files and their metadata.

Typically, that software bundles logic to parse the storage with other interfacing

software, from custom navigation shells

2

 to full original file system kernel modules.

Unfortunately, in these approaches, functionality can be hindered or prevented due to

ongoing maintenance requirements and lack of implementation resources.

We present a file system called the Digital Forensics XML File System

(‘DFXMLFS’), and an accompanying workflow that normalizes access to storage

systems, requiring only the development of a storage system parser. The key element of

our approach is separating file system parsing from file system interfacing. We provide

background on why this approach is possible, historically and technologically. We

describe scenarios in which this practice can be beneficial and critical. Finally, we

characterize essential components and provided examples to assist motivated developers

with the broader goal of enabling access to outdated or uncommon storage systems as

economically as possible.

Background

File systems have grown feature sets from a core concept of hierarchical file

organization. Some examples of features include full-disk encryption (e.g., APFS for

macOS), data and metadata checksumming (e.g., ZFS for OpenSolaris), live system

repair (e.g., ZFS), and quota groups (e.g., Btrfs). Yet for the typical computer user,

interaction with the file system and corresponding user needs have not evolved much

beyond search and access capabilities. The POSIX family of standards from the late

1980s defined a consistent user interface in terms of command-line functionality,

including the way the user navigates the file system and the way that the file system is

displayed (IEEE, 1988). Even with the popularization of graphical windowed

1 Certain products may be identified in this document, but such identification doesn’t imply

recommendation by the US National Institute of Standards and Technology or other agencies of the US

Government, nor does it imply that the products identified are necessarily the best available for the

purpose.

2 Durno (2016) provides many examples of tools with custom file system interfaces.

IJDC | General Article

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 311

environments, the feature set of file systems – particularly what is visible to the user –

has remained largely the same (Reimer, 2008). Indeed, file system user interfaces have

remained largely the same in the past 30 years or more (Ames, Maltzahn, and Miller,

2008). Users typically have little knowledge or insight into file system level features

such as journaling or data de-duplication; even with those advanced features, users may

rely on file listings alone for organization and access.

As we increasingly make and accumulate our own streams of data on a variety of

media, users may wish to examine specific file system features for different purposes

and through a variety of methods. Digital archivists and forensic analysts share some

needs for metadata features that have remained stable since near the beginning of file

systems. For example, an archivist may wish to gather contextual information about the

modification, access, and change (MAC) times of a file system to ensure provenance

(Woods, Lee, and Misra, 2013). A scholar may also wish to recover a file that

previously thought to be deleted (Kirschenbaum, Ovenden, Redwine, and Donahue,

2010).

DFXMLFS is a FUSE (Szeredi, 2006) file system that leverages DFXML

(Garfinkel, 2012) to separate the file system parsing and interface software. DFXMLFS

is largely possible because of file systems’ long-lasting interface stability. It presents a

navigable interface to robust file system metadata while also complying with a broad

common denominator in contemporary storage interface requirements, such as adhering

to the navigating and file-reading components of the POSIX interface (IEEE, 1988).

The end result is the ability to navigate any hierarchical storage medium that has

previously implemented the POSIX interface, even if the medium’s last living interface

software lost support decades ago. Critically, the work required for this functionality

restoration is significantly less per file system type, in comparison with updating an

original implementation most likely tied to an also-obsolesced operating system.

DFXMLFS joins two technologies to enable storage system access and demonstrates the

benefits of adopting an in-common practice, following an in-common language

specification.

FUSE

Filesystem in Userspace (FUSE) (Szeredi, 2006) is a library that offers an alternative

system for developing file systems. FUSE moves file system development from

implementing a kernel module to instead writing userspace functions. This has aided the

prototyping of many file system designs that were either experimental or better suited

for userspace operations. The related work section will discuss some example

alternatives to traditional hierarchical file navigation.

DFXML

Digital Forensics XML (DFXML) provides a plaintext language for viewing file system

artifacts. DFXML stores storage-forensic tool output, enabling capture and

representation of file system metadata to ensure provenance, authenticity, and integrity

of storage media (Woods, Chassanoff, and Lee, 2013). One objective behind its

development was to automate some components of storage analysis that did not require

access to the disk image (Garfinkel, 2009; 2012). For instance, timeline analysis and file

signature recognition only need limited metadata from the storage system (file

timestamps and content checksums), and only once.

IJDC | General Article

312 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

DFXML is a sufficient manifest to enact full storage navigation and file extraction

without needing to re-parse on-disk structures after the XML is generated. DFXML

provides a vocabulary that supports the data necessary to create an in-memory file

system tree, including file properties like name, path, size, times, data addresses, and

checksums.

This is not the full extent of file properties that DFXML can capture, but it is

sufficient for most file system navigation and content viewing needs. The Digital

Forensics XML schema

3

 provides full documentation on the structure and other

metadata fields in a DFXML file.

Note that in this paper, navigation and file extraction are two separate file system

support objectives, that somewhat satisfy a partial ordering. Navigating a file system

requires being able to provide an illustration of the directory hierarchy, typically by

parsing directory entry data structures. Extracting file content requires additional

supporting metadata, often provided as data addresses within the original medium.

DFXML provides language constructs that can represent data locations, but few of the

DFXML generators currently available produce file data locations. Location metadata

is among the most challenging to provide (Nelson et al., 2014), but this paper shows it is

also an intrinsically rewarding implementation objective.

Related Work

FUSE and Alternate Approaches to Navigating Files

Some projects have taken an attribute-based approach to navigating files, including

hierarchies like metadata query construction. For example, a virtual directory entitled

“mp3” could filter an audio file collection down to MP3s, and another directory under

that titled “bitrate_320kbps” further filter to select a certain bit rate. Folder

hierarchies can also be used to organize parameterized experiment results, using

directories to note parameter values used (Strong, Jones, Parker-Wood, Holloway, and

Long, 2011). Navigating file sets by attributes carries several challenges in metadata

identification and indexing (Ames et al., 2005; Parker-Wood, Long, Miller, Rigaux, and

Isaacson, 2014), but can offer a useful alternative to fixed directory hierarchies when

considering files with rich and consistent metadata.

It is possible to use FUSE as more of an intermediary layer to access another file

system. The SSH File System (SSHFS) acts in the same way an NFS client does,

‘mounting’ a remote system’s directory locally, but only requiring SSH access instead of

an NFS server process to be actively exporting a share.

Normalizing Storage System Interfaces

Recovery of computer storage contents has several different levels of challenges. One

challenge Nelson et al. (2014) identified in inspection of an uncommon file system was

that several of the file system analysis tools made the design assumption that the input

disk image was an image of the disk partition containing the file system. Unfortunately,

storage analysis in forensic and curation processes typically begin with images of entire

3 Digital Forensics XLM Schema: https://github.com/dfxml-working-

group/dfxml_schema/blob/master/dfxml.xsd

IJDC | General Article

https://github.com/dfxml-working-group/dfxml_schema/blob/master/dfxml.xsd
https://github.com/dfxml-working-group/dfxml_schema/blob/master/dfxml.xsd

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 313

disks, which have a partition management format that further points to disk partitions.

The game console file system Nelson et al. inspected also had a custom partition

management system. They applied a subset of the same practice as suggested in this

paper, but for the purpose of accessing file systems: a forensic tool would inspect the

partition management system, and then present a FUSE- based file system, UPartsFS,

that offered each disk partition as its own virtual file. This relieves file system analysis

tools from needing additional logic to handle partitioning systems as well.

The present implementation of UPartsFS relies on a version of The SleuthKit

(Carrier, 2003) modified to analyze this uncommon storage. UPartsFS could be

modified to use an XML representation of partition tables, which would remove its

reliance on a customized version of another tool’s code base. Then other tools can be

used to recognize disk images, and output appropriate partition type and size metadata

as DFXML. Switching to an XML representation for partition data would help integrate

research from file type identification (Underwood, 2013).

Current Access Strategies

DFXMLFS offers one strategy to enable access to an uncommon storage medium that is

unsupported by current operating systems. There are several other strategies also

available today, listed in Table 1 in mostly decreasing order of implementation

difficulty.

DFXMLFS provides an alternative option, requiring a smaller base of programming

experience. A forensic tool can be developed from scratch (or adapted from available

source options) to parse a storage system and serialize the storage data structures as a

metadata manifest in DFXML, instead of implementing a user interface. DFXMLFS

then handles joining the tool’s output with a kernel’s file system interface, enabling

standard file-listing and directory-walking interactions by mounting the DFXML file

like any read-only medium. If data addresses or file extraction commands are included

in the XML, the original disk image can also be provided alongside the DFXML to

enable read-only file extraction. However, only some DFXML generation strategies can

yield that level of supporting metadata.

DFXMLFS Usage Workflow

The objective of DFXMLFS is to normalize navigation of arbitrary hierarchical file

systems. DFXMLFS usage follows a parse–serialize–transport–deserialize workflow.

Our workflow serializes file systems to DFXML as an intermediary, text-based format,

and uses the FUSE framework to deserialize that text into a modern-acting file system

in a later process – even on a separate system. The DFXMLFS program – the

implemented FUSE interface – handles deserialization and user presentation. Usage of

DFXMLFS is still a ‘workflow,’ because DFXMLFS does not come built in with a

universal parser for all file systems. Each file system requires special-case handling, in

many cases by whomever finds themselves with an uncommon storage system in hand.

What is required most of that analyst is locating or developing the first of the workflow

steps: a parser and serializer.

IJDC | General Article

314 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Table 1. Strategies to enable file system interaction for uncommon storage media. Note the

latter three strategies also require an understanding of the file system’s design.

Strategy Pros Cons

Preserve in situ

access, using

original hardware

 Provides the original

experience

 Entails maintaining the

original devices

 There may be issues with

exporting data (e.g., no file

system interface in games

consoles)

Virtualize or

emulate the

original system

 Offers nearly original-

device experience

 Can be provided as-a-

Service (Woods, Lee,

Stobbe, Liebetraut and

Rechert, 2015)

 Requires extensive knowledge

of original hardware

 Efforts taken to preserve one

system’s operational status

don’t necessarily generalize

Implement or

modernize a

kernel module

 Allows a current host

system using the chosen

kernel to mount the storage

device as normal

 Requires selecting a set of

kernels to support

 Requires working knowledge

of internals of the kernels

chosen to receive development

efforts

 Suffers from effort

fragmentation – kernel

modules not guaranteed to be

portable (e.g., BSD vs Linux)

 Run-time parsing faults cause

bad browsing user experience

Implement a

FUSE file system

 Provides mostly same user

experience as kernel

module

 Removes kernel

development knowledge

requirement

 Run-time parsing faults cause

bad browsing user experience

Extend, or design

and implement, an

independent

forensic tool

 Tool can be written in the

style of the implementer’s

choice

 Parsing faults seen by

analyst, not necessarily

browsing user

 Development freedom comes

with the need for a user

interface (e.g., custom

command-line shell, custom

GUI)

 Non-standard storage

interactions lead to fragmented

user experiences

IJDC | General Article

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 315

Figure 1. DFXML-based workflow: The disk image is parsed for the metadata in its inodes and

dirents. These are serialized into an XML tree with essential file system metadata,

and the result is later de-serialized for user interaction. XML conversion and time-

separated de-serialization for display to the user are the core contribution of

DFXMLFS.

Storage Parsing

A file system parser is a program that populates data structures of a file system API—

nominally, the POSIX Virtual File System interface. At other points in this paper,

instead of file systems, storage systems are referenced. A storage system is meant to

entail some storage device or image that contains one or more file systems, organized

by a partition system. A storage system parser has the additional step of parsing partition

systems before parsing file systems.

A file system parse will typically result in finding at least the following information:

 File size;

 Timestamps, such as last modification, last metadata change, last access, and

creation;

 File path from the root of the file system.

Normally, the kernel would also want some type of list of on-disk addresses of data

blocks that store file and directory contents. However, this is not strictly necessary. A

running file system process only needs to be able to respond sanely to a

read(dest_buffer, offset, length, file_handle) system call, which

only requires bytes yielded from a byte stream.

Serialization

Navigating serialized metadata may be best illustrated by observing directory listing

information. For example, Figure 2 shows a recursive directory listing in a modern,

POSIX-based file system. It is possible to construct a navigable file system from this

information: the listing shows there are two directories with four named files, and their

modification times. However, this text listing is not sufficient to view the file contents.

To meet that objective, we turn to DFXML to represent usual file metadata users see, as

in ls output, and data location metadata as well.

IJDC | General Article

316 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

$ ls -lR .
.:
-rw-r--r-- 1 alex alex 377 Sep 13 11:09 Makefile
-rw-r--r-- 1 alex alex 244619 Sep 13 14:54 dfxmlfs.pdf
-rw-r--r-- 1 alex alex 1164 Sep 13 11:09 dfxmlfs.tex
drwxr-xr-x 3 alex alex 102 Sep 9 16:16 figures
./figures:
-rw-r--r-- 1 alex alex 72823 Sep 9 15:53 image001.png

Figure 2. A recursive directory listing.

<fileobject>
 <filename>figures/image001.png</filename>
 <filesize>72823</filesize>
 <mtime>2016-09-09T19:53:42Z</mtime>
 <ctime>2016-09-09T20:16:16Z</ctime>
 <atime>2017-01-21T21:32:23Z</atime>
 <crtime>2016-09-09T19:53:42Z</crtime>
 <byte_runs>
 <byte_run
 img_offset="42949672960"
 fs_offset="41875931136"
 file_offset="0"
 len="72823" />
 </byte_runs>
 <hashdigest type="md5">fc9a9233...</hashdigest>
 <hashdigest type="sha1">86e2663c...</hashdigest>
</fileobject>

Figure 3. DFXML of image001.png from Figure 2. This illustrates output of a tool that

provides data addresses. (Some content has been trimmed for print.)

A DFXML document provides a stream of fileobject elements, optionally

within volume elements for disk partitions. Figure 3 shows an excerpt of DFXML that

would represent the graphic file from Figure 2.

Deployment

DFXMLFS is implemented and currently available.

4

 What is left to the interested digital

curator or storage analyst is parsing and serializing the storage, either by finding a

DFXML generator or developing one. A later section describes available generators,

which can serve as working examples if code meeting the analysis objective is not

available. First, we describe the implementation of DFXMLFS, so the user may

understand what is needed to enable normal storage interaction.

DFXMLFS Implementation

DFXMLFS joins two technologies that have focused on simplifying file system design

and analytics, in order to implement read() and other calls that comprise a file system

4 DFXMLFS Github repository: https://github.com/ajnelson-nist/dfxmlfs

IJDC | General Article

https://github.com/ajnelson-nist/dfxmlfs

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 317

interface. DFXML’s Python support includes a library of Objects5

 which read and

write XML documents and provide an object-oriented programming interface.

DFXMLFS implements file system functions in the Python FUSE bindings (Szeredi,

Henk, Delafond, James, and Epler, 2004) that are sufficient to expose a read-only file

system to the user.

Figure 2 showed that with inode data extractable with the stat() command, one

can populate all but file contents for an entire directory hierarchy. This information is

often exposed by tools that implement a navigation shell. The more difficult challenge is

in presenting file content. A DFXML generator has to provide one of two things:

1. byte_runs elements for each file’s content

2. A command to use a tool to extract file content into a cache, to which the FUSE

bindings can pass reading operations with regular system calls.

There is a trade-off in the choice made for file extraction strategy. If individual

extraction commands are embedded in the DFXML file, then file viewing is dependent

on the original parsing tool being (1) present at navigation time, and (2) stateless in its

execution.

For contrast, one example of a stateful parser is the uxtaf tool (Ladan, 2007), a

parser and navigation shell for XBox 360TM disk partitions. It maintains an

‘environment’ file that tracks, among other things, the current working directory of its

custom shell between shell calls (e.g., the file records the new current working directory

on calling ‘cd’). Simultaneous calls to extract files from separate directories are not

supported by such a model, meaning DFXMLFS would need to support a global read

lock, to be acquired when a file is read. Another stateful parser, hfsutils (Leslie,

1996), uses a single state file in the user’s home directory, making simultaneous access

of multiple disks impossible.

Alternatively, implementing byte_runs elements to report file content locations

makes later file viewing independent of the parsing tool. byte_runs elements also

make the tool’s results more comparable with file system differential analysis (Nelson et

al., 2014). However, they require a fairly complete understanding of a file system’s on-

disk data structures, and if the DFXML generator is a tool extension, extensive

understanding of the tool internals.

For the purposes of DFXMLFS, the objective level of DFXML generation is to

report byte runs, but this is near the end of a simplified spectrum of ‘feature

completeness’ of a generator. This is an approximate order of levels of completion for a

generator:

1. Identifying directories and files

2. Identifying directory and file timestamps

3. Reporting file checksums for fixity

4. Reporting byte runs

5. Reporting other non-essential metadata.

These were chosen as generator development milestones due to the various types of

approaches that can be taken for implementation (with examples of each approach given

5 Library of Python Objects: https://github.com/simsong/dfxml/blob/master/python/Objects.py

IJDC | General Article

https://github.com/simsong/dfxml/blob/master/python/Objects.py

318 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

in a later section). All but the last can be used to fulfill ‘essential’ metadata roles a full

file system implementation must typically fulfill (especially inode data and data block

pointers).

Note that ‘essential’ here means essential to file system navigation and content

extraction, though other use cases may have different priorities. For example,

ownership and permission information can be more important than byte runs in a

security review procedure that audits roles.

Figure 4 shows a working example of DFXMLFS, mounting the results of a tool

that generates byte_runs elements, hfs2dfxml (Dietrich, 2015). Because the data

block references are encoded in the XML, this textual representation of Apple HFS file

systems can be mounted on a system without any HFS parsers present, including the

hfsutils suite that originally generated the XML.

Versus File-Set Approaches

Another alternative to using DFXML or DFXMLFS is to simply provide as parser

output the set of all files the tool could find, perhaps packaged as a compressed archive.

As an alternative to providing a simple file set, the DFXMLFS approach offers some

advantages, including:

 Some timestamps, aside from modification time, cannot be preserved in an

extracted file set. It could be important to an analysis to know what the original

creation time of a file was, but that cannot be re-created for an extracted file,

because the host operating system will overwrite that timestamp with the time of

extraction – when the file was ‘created’ on the host file system (Grier, 2011).

 A storage system that violates name uniqueness could cause files in an extracted

set to be overwritten. DFXML provides a file metadata manifest that can detect

name duplication.

 DFXML can be used to compare tool results at a finer metadata granularity than

extracted files (Nelson et al., 2014) in part because some fields are difficult to

preserve when extracted to a new host file system (e.g., rarely-implemented time

stamps and extended metadata attributes that may not be supported in the

content-presenting operating system).

 A polyglot storage system, such as a CD-ROM that presents two file systems for

multiple operating systems while sharing data pointers (e.g., PC-Mac hybrid

games from the late 1990s), would be more cumbersome to report as a file set

without use of hard links.

IJDC | General Article

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 319

Figure 4. Screenshot of DFXMLFS mounting an HFS disk image with a supporting DFXML

document. No HFS utility is used to mount the disk, but file content and metadata are

available to the graphical file navigator – note there is sufficient information to

populate a thumbnail from recognized file contents, and to report file size.

Deleted content offers a presentation-time challenge for both the file-set and

DFXML approaches. DFXML provides deletion-analysis capabilities that a file-

extracting tool could duplicate with a class of messages in its extraction log, but this

induces another interface design to inspect the deleted content. If the end user wishes to

see deleted content, both approaches would need to resolve issues with naming the

deleted files in a way to avoid conflicts. A run-time option on DFXMLFS may offer

more flexibility to the end user – like deleted-file renaming strategy choices – than

having to rename files from a compressed archive.

Potential Applications of the Framework

There are several usage scenarios that benefit from separating storage system parsing

from navigation.

IJDC | General Article

320 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Viewing File Contents of Obsolete Storage

Digital curation is a practice that is likely to encounter storage systems that are no

longer supported by current operating systems. For example, there are collections by

artists who used early versions of Adobe Photoshop on Macintosh computers that only

used the HFS file system (Dietrich and Adelstein, 2015). There are several challenges in

curation at different levels of computing practice: given the device, reading the bytes;

given the bytes, parsing the file system; and given the files, viewing or migrating their

content. The problem of interacting with bygone user-level applications is out of scope

for this paper, but is handled by some others with software emulation (Woods, Lee,

Stobbe, Liebetraut, and Rechert, 2015). The DFXMLFS approach leans closer to data

annotation and migration.

Some curation exhibits only partially present computer storage contents to patrons

(or students). One might not necessarily want to release file contents – e.g., file contents

may require sanitization for privacy purposes – but it could be permissible for an exhibit

to exhaustively list metadata. In this case, or if media are unavailable or yet

unprocessed, the XML can be mounted and a user can navigate the hierarchy, noting file

names, and then requesting files that are key to their interests. DFXML could also be

used to highlight subsets of a file system for other reasons, such as by showing files

added or changed since a prior known state of the same disk, found by differential

analysis (Garfinkel, Nelson, and Young, 2012).

Low-Bandwidth Retrieval Planning

Many applications of DFXMLFS focus on restoring functionality to storage devices at

hand. However, it can also be used in prototyping or presenting alternate interfaces to

data. For applications in which the communication bandwidth is extremely limited,

obtaining all of the file contents of a storage device may be impractical or impossible,

while extracting metadata may be tenable. An example of such a domain is obtaining

files from a device on another planet.

The communication path from Earth to the Mars Science Laboratory (Curiosity) has

a portion that can only transmit in the hundreds of bits per second (Brat, Rungta, and

Venet, 2013). The decision process on which of up to 300,000 rover files called ‘data

products’ to transmit back from the rover requires a prioritization queue system on the

rover itself. Data products will have predetermined priorities at creation time, which can

be changed by sending commands to the spacecraft. However, due to the relative

positions of Earth, Mars, the rover, the orbiters, and the difference in time between an

Earth day and a Martian day, human-in-the-loop planning and telecommunication asset

scheduling sees latency of a full day or more.

A full manifest of data products may be requested from the rover in order for

operators to determine the state of on-board memory. Moreover, a delta-manifest may

be requested more frequently for correlating changes in memory state, e.g., when items

are created, deleted, or marked sent. These deltas are incorporated into a database

consisting of all Earth knowledge of data products onboard the rover. Thus, the

metadata for the rover’s data products is most often viewed as results of a database

query.

Another way that manifest or delta-manifest of data products can be navigated is as

a file system. A generator can construct DFXML from the rover’s delta-manifest, or a

combination of these manifests, illustrating file system changes over time. DFXMLFS

could then render the reformatted manifest to a file browser, enabling operators and

IJDC | General Article

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 321

scientists to browse the data product manifest in a similar experience to walking the

rover’s file system. Some operations staff may benefit from the alternative usability

experience of browsing, searching, filtering, and making sense of the file system

contents, using this view to update the data product delivery priority queue.

Contemporary, but Uncommon, Storage

Some storage systems are not intended for general use. For example, the XBox and

XBox 360 game consoles used a custom variant of the FAT file system not used in any

other computing systems (Nelson et al., 2014). That file system behaved much like FAT,

but used custom data structures and a hard-coded partition management system. The file

system received a partial kernel implementation for FreeBSD (Ladan, 2007), but

otherwise was mostly accessed by either game consoles or forensic tools. DFXMLFS

normalizes access to such specialized storage systems, albeit in a read-only fashion.

Parsing Security

A forensic tool can pre-process a disk image to make the XML file, and then the XML is

what is presented to the kernel Virtual File System layer. The original disk image is not

presented to the VFS or kernel space. This provides a significant security benefit: if a

storage system contains malicious constructs intended to attack vulnerable kernel code,

a userspace program would not present the same attack surface. Additionally, if multiple

parsers are used, an anti-forensic technique that attempts to evade an expected

adversary’s parser may fail against alternate tools, and even highlight payload data with

file system differencing.

Presentation Security

Content scrubbing and redaction is part of some digital archivist workflows. If an

exhibit doesn’t intend to extract files from a disk image (e.g., because of wanting to

preserve resource forks in an HFS image), a disk image can have sectors ‘white-listed,’

using the byte run information to blank out everything but sectors essential for file

contents, an example of partial disk imaging (Grier and Richard, 2015). In contrast,

DFXML has been used by others to blacklist files (Woods et al., 2011; Woods et al.,

2015).

DFXML Generator Examples

There are several available open source DFXML generators. They demonstrate different

approaches to parsing storage and normalizing the storage state, yielding different levels

of completeness of essential file system metadata. On the sparser end of the spectrum,

only directory and file names are reported – e.g., as derivable from a file manifest listing

one file path per line. On the more complete end of the spectrum, content addresses (i.e.,

image offsets and run lengths) are included for files, meaning no forensic tools need be

required on the navigating computers. The order of the approaches here roughly

decreases in effort required to generate DFXML, while simultaneously increasing

dependence on a storage parsing tool to be present at navigation time to let DFXMLFS

provide file contents.

IJDC | General Article

322 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Forensic Tool APIs

Some forensic tools provide scripting or library support for using their parsing engine.

The original DFXML paper (Garfinkel, 2009) introduced the tool Fiwalk as an

extension to The SleuthKit, employing The SleuthKit’s internal bindings to direct

storage parsing and report the results as XML.

For digital forensic storage analysis tools that provide programmatic access to their

parsing engines, it should be possible to produce DFXML given training or familiarity

with the exposed APIs. For instance, the forensic tool EnCase provides a scripting

engine with its own custom language. One user wrote a script in this language to use

EnCase’s API to generate DFXML (Bourdon-Richard, 2014), including byte_runs

elements.

Forensic Tool Injection and Extension

With some forensic tools, an API may not be provided for external code linking, yet it

may be possible to extend software in any case. Nelson et al. (2014) extended two file

system parsers

6

 to generate DFXML, by inserting generating functions and data

structure support into the code bases.

If taking this approach, much can be learned from tool behaviors with debug print

statements, such as what a tool believes are the addresses of directory tree data

structures to name file references. Later, the logic making those debug print statements

can be re-purposed to make DFXML instead – sufficiently complete to let DFXMLFS

read the disk’s files without the (possibly customized) tool on the browsing system.

However, care should be taken with this approach to not negatively affect the parsing

routines as code is inserted.

Forensic Tool Output Parsing

Some storage forensic tools offer custom command-line navigation interfaces,

producing output for every file. This kind of tool output can be parsed, converting un-

or semi- structured text output into DFXML, but requires implementing a custom ‘shell

script’ for what is a custom shell provided by the program. For instance, hfs2dfxml

(Dietrich, 2015) scripts calls to the stateful shell provided by hfsutils (Leslie, 1996),

parsing the text output with regular expressions.

This DFXML-generating approach may be a preferable alternative to modifying tool

source code in some situations. However, if the tool does not provide addresses of data

in any of its shell commands, then DFXMLFS cannot provide file contents.

Userspace Consumers

Some DFXML generators do not perform any storage parsing, instead consuming

storage state as the operating system presents it to the user. The Python script

walk_to_dfxml.py takes the data of the stat structure and formats it into

DFXML with the Objects.py library. walk_to_dfxml.py also generates hashes

by reading file contents, but has no access to block pointers and thus cannot create

byte_runs elements. Similarly, the hashdeep (Kornblum, 2008) family of tools

6 The modified versions of the two parsers, uxtaf and py360, can be found at:

https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/

IJDC | General Article

https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 323

written in C++ produces hashes for sets of files, relying on the kernel to handle storage

parsing.

DFXML generated in this style, relying on the operating system to present storage

contents, can be used to verify later that file contents are extracted consistently.

However, beyond providing inode numbers and checksums, DFXML generated this way

cannot further assist with file extraction if the storage parsing interface becomes absent.

Such a DFXML file can be mounted and navigated, but attempts to read would receive

‘Not-implemented’ error messages.

Future Work

A library in the DFXML code base, Extractor.py, facilitates serving file contents

using shell calls instead of byte runs. However, at the moment it is hard-coded to use

The SleuthKit commands. Future development of Extractor.py, and an extension to the

DFXML language, can standardize a <fileobject> child element that stores a file-

reading script. It is likely this kind of an interface, instead of byte runs, will be

necessary in many cases for some file systems because of features like transparent

compression and encryption. Other forensic languages or frameworks, such as Hansken

(van Beek et al., 2015), include a notion of a forensic derivation chain similar to the

forensic path of bulk_extractor (Garfinkel, 2013), where one can specify that a

file must be decrypted, uncompressed, XOR’d, and have any other transformations

applied. This type of recursive processing functionality does not presently exist in the

DFXML libraries at the time of this writing.

Another benefit comes from DFXMLFS separating storage parsing from interfacing.

DFXML created for one subject image and multiple independently developed tools can

have its contents verified, or flagged for further scrutiny, from differential analysis. One

file system has received a DFXML-based storage meta-analysis. If forensic file system

parser users contribute DFXML generators for their own subject media, storage forensic

analysis as a whole benefits from getting cross-examinable results.

Conclusion

The DFXML File System enables access to storage system contents without requiring

one to have knowledge of implementing an operational file system, in kernel space or

user space. It reduces the challenge of bridging the end user to an uncommon storage

device; instead, our workflow calls for a simple parse of on-storage contents and the

generation of a text file. A digital curator, and ultimately an end-user, should not require

kernel-level file system implementation training to simply view the contents of antique

or uncommon file systems. The creation of DFXML generators for non-contemporary

file systems lowers the barrier to the curation and forensic communities to read their

own instances of those storage formats.

Following the DFXMLFS workflow, only file system on-disk data structure

knowledge is needed to navigate contents of an uncommon storage medium.

DFXMLFS reduces the knowledge required to the more specialized and localized topic

of the medium’s file systems. The parsing can be done with analysis tools of varying

implementation quality, from lightly-tested, experimental code that re-formats

debugging print statements or current tool output, to full-fledged kernel modules.

IJDC | General Article

324 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Formatting storage media contents into DFXML lets those contents be navigated like in

their original setting, but separated in time and even space from the parsing process.

The forensic and curation communities benefit from having several generators

available for any one file system type. Taken together, independent implementations of

storage parsers improve understanding of individual storage systems, different file

systems’ specifications, and of the practice of storage parser testing. These are all

benefits of decoupling parsing and navigation, and further of using an in-common

representation of file systems that differ vastly in on-disk organization. If an archivist or

investigator is faced with a storage system their current operating system cannot mount,

DFXMLFS presents a lighter coding path to reading the storage like any other file

system of today.

Resource Availability

DFXMLFS is available on Github at https://github.com/ajnelson-nist/dfxmlfs.

Acknowledgements

Portions of this work were performed by the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space

Administration.

Some materials in this paper previously appeared in a presentation at CurateGear,

2016 (Nelson, 2016).

Thanks to Simson Garfinkel, Kevin Fairbanks, Eoghan Casey, and members of the

BitCurator Access Advisory Board for fruitful discussion. Thanks to Dianne Dietrich for

hfsutils notes. Thanks to the National Software Reference Library for assistance with

HFS demonstrations.

References

Ames, A., Bobb, N., Brandt, S. A., Hiatt, A., Maltzahn, C., Miller, E. L., Neeman, A., &

Tuteja, D. (2005). Richer file system metadata using links and attributes. In

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage

Systems and Technologies. Monterey, CA.

Ames, S., Maltzahn, C., & Miller, E.L. (2008). Quasar: A scalable naming language for

very large file collections (tech. rep. No. UCSC-SSRC-08-04). University of

California, Santa Cruz.

Bourdon-Richard, S. (2014). Generate DFXML with EnCase. Retrieved from

https://github.com/Sebastienbr/DFXML-EnCase

Brat, G., Rungta, N., & Venet, A. (2013). Proceedings of NASA Formal Methods, 5th

International Symposium (NFM 2013). Moffett Field, CA, USA: Springer.

IJDC | General Article

https://github.com/Sebastienbr/DFXML-EnCase
https://github.com/ajnelson-nist/dfxmlfs

doi:10.2218/ijdc.v12i2.581 Nelson, Chassanoff and Holloway | 325

Carrier, B. (2003). The SleuthKit. Retrieved from http://sleuthkit.org/

Dietrich, D. (2015). Hfs2dfxml. Retrieved from https://github.com/cul-it/hfs2dfxml/

Dietrich, D. & Adelstein, F. (2015). Archival science, digital forensics, and new media

art. In Proceedings of the 15th Annual Digital Forensic Research Workshop

(DFRWS USA). Philadelphia, PA.

Durno, J. (2016). Digital archaeology and/or forensics: Working with floppy disks from

the 1980s. Retrieved from http://journal.code4lib.org/articles/11986

Garfinkel, S. (2012). Digital Forensics XML and the DFXML toolset. Digital

Investigation, 8(3–4), 161–174.

Garfinkel, S. (2013). Digital media triage with bulk data analysis and bulk_extractor.

Computers & Security, 32, 57–72.

Garfinkel, S.L. (2009). Automating disk forensic processing with SleuthKit, XML and

Python. In Fourth International IEEE Workshop on Systematic Approaches to

Digital Forensic Engineering (SADFE ’09) (pp. 73–84). Berkeley, CA.

Garfinkel, S., Nelson, A.J., & Young, J. (2012). A general strategy for differential

forensic analysis. In Proceedings of the 12th Annual Digital Forensic Research

Workshop (DFRWS). Washington, DC.

Grier, J. (2011). Detecting data theft using stochastic forensics. In Proceedings of the

11th Annual Digital Forensic Research Workshop (DFRWS). New Orleans, LA.

Grier, J. & Richard, G.G. (2015). Rapid forensic imaging of large disks with sifting

collectors. In Proceedings of the 15th Annual Digital Forensic Research Workshop

(DFRWS USA). Philadelphia, PA.

IEEE. (1988). IEEE Standard Portable Operating System Interface for Computer

Environments. IEEE Std. 1003.1-1988. Retrieved from

https://standards.ieee.org/findstds/standard/1003.1-1988.html

Kirschenbaum, M.G., Ovenden, R., Redwine, G., & Donahue, R. (2010). Digital

forensics and born-digital content in cultural heritage collections. Council on

Library and Information Resources.

Kornblum, J. (2008). Hashdeep. Retrieved from https://github.com/jessek/hashdeep

Ladan, R. (2007). xbox360. Retrieved from https://github.com/rene0/xbox360

Leslie, R. (1996). Hfs utilities. Retrieved from https://www.mars.org/home/rob/proj/hfs/

Nelson, A.J. (2016). Navigating unmountable media with the Digital Forensics XML

File System. Paper presented at CurateGear 2016. Retrieved from

https://ils.unc.edu/digccurr/curategear2016-talks/nelson-curategear2016.pdf

IJDC | General Article

https://ils.unc.edu/digccurr/curategear2016-talks/nelson-curategear2016.pdf
https://www.mars.org/home/rob/proj/hfs/
https://github.com/rene0/xbox360
https://github.com/jessek/hashdeep
https://standards.ieee.org/findstds/standard/1003.1-1988.html
http://journal.code4lib.org/articles/11986
https://github.com/cul-it/hfs2dfxml/
http://sleuthkit.org/

326 | Navigating Unmountable Media doi:10.2218/ijdc.v12i2.581

Nelson, A.J., Steggall, E.Q., & Long, D.D.E. (2014). Cooperative mode: Comparative

storage metadata verification applied to the Xbox 360. In Proceedings of the 14th

Annual Digital Forensic Research Workshop (DFRWS USA). Denver, Colorado.

Parker-Wood, A., Long, D.D.E., Miller, E.L., Rigaux, P., & Isaacson, A. (2014). A file

by any other name: Managing file names with metadata. In Proceedings of the 7th

Annual International Systems and Storage Conference (SYSTOR 2014). Haifa,

Israel.

Reimer, J. (2008). From BFS to ZFS: Past, present, and future of file systems. Retrieved

from https://arstechnica.com/gadgets/2008/03/past-present-future-file-systems/

Strong, C., Jones, S., Parker-Wood, A., Holloway, A., & Long, D.D.E. (2011). Los

Alamos National Laboratory interviews (tech. rep. No. UCSC-SSRC-11-06).

University of California, Santa Cruz.

Szeredi, M. (2006). Filesystem in Userspace. Retrieved from

https://github.com/libfuse/libfuse

Szeredi, M., Henk, C., Delafond, S., James, S., & Epler, J. (2004). Python-fuse.

Retrieved from https://github.com/libfuse/python-fuse

Underwood, B. (2013). Tools for file format identification, validation and

characterization. Presented at CurateGear 2013. Retrieved from

https://ils.unc.edu/digccurr/curategear2013-talks/underwood-curategear2013.pdf

van Beek, H., van Eijk, E., van Baar, R., Ugen, M., Bodde, J., & Siemelink, A. (2015).

Digital forensics as a service: Game on. Digital Investigation, 15, 20–38. Special

Issue: Big Data and Intelligent Data Analysis. doi:10.1016/j.diin.2015.07.004

Woods, K., Chassanoff, A., & Lee, C.A. (2013). Managing and transforming digital

forensics metadata for digital collections. In Proceedings of the 10th International

Conference on Preservation of Digital Objects (iPRES 2013) (pp. 203–208). Lisbon,

Portugal.

Woods, K., Lee, C.A., & Misra, S. (2013). Automated analysis and visualization of disk

images and file systems for preservation. In Archiving 2013 - Final program and

proceedings (pp. 239–244). Washington, DC.

Woods, K., Lee, C. A., Stobbe, O., Liebetraut, T., & Rechert, K. (2015). Functional

access to forensic disk images in a web service. In Proceedings of the 12th

International Conference on Preservation of Digital Objects (iPRES 2015). Chapel

Hill, NC, USA.

Woods, K., Lee, C., Garfinkel, S., Dittrich, D., Russel, A., & Kearton, K. (2011).

Creating realistic corpora for forensic and security education. In 2011 ADFSL

conference on digital forensics, security and law. Richmond, VA: Elsevier.

IJDC | General Article

http://dx.doi.org/10.1016/j.diin.2015.07.004
https://ils.unc.edu/digccurr/curategear2013-talks/underwood-curategear2013.pdf
https://github.com/libfuse/python-fuse
https://github.com/libfuse/libfuse
https://arstechnica.com/gadgets/2008/03/past-present-future-file-systems/

	Introduction
	Background
	FUSE
	DFXML

	Related Work
	FUSE and Alternate Approaches to Navigating Files
	Normalizing Storage System Interfaces
	Current Access Strategies

	DFXMLFS Usage Workflow
	Storage Parsing
	Serialization
	Deployment

	DFXMLFS Implementation
	Versus File-Set Approaches

	Potential Applications of the Framework
	Viewing File Contents of Obsolete Storage
	Low-Bandwidth Retrieval Planning
	Contemporary, but Uncommon, Storage
	Parsing Security
	Presentation Security

	DFXML Generator Examples
	Forensic Tool APIs
	Forensic Tool Injection and Extension
	Forensic Tool Output Parsing
	Userspace Consumers

	Future Work
	Conclusion
	Resource Availability
	Acknowledgements
	References

