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Abstract

The National Synchrotron Light Source II operating at Brookhaven National 
Laboratory since 2014 for the US Department of  Energy is one of  the newest and 
brightest storage-ring synchrotron facility in the world. NSLS-II, like other facilities, 
provides pre-processing of  the raw data and some analysis capabilities to its users. We 
describe the research collaborations and open source infrastructure developed at large 
instrument facilities, such as NSLS-II, for the purpose of  curating high value scientifc 
data along the early stages of  the data lifecycle. Data acquisition and curation tasks 
include storing experiment confguration, detector metadata, and raw data acquisition 
with infrastructure that converts proprietary instrument formats to industry standards. 
In addition, we describe a specifc effort for discovering sample information at NSLS-II 
and tracing the provenance of  analysis performed on acquired images. We show that 
curation tasks must be embedded into software along the data life cycle for effectiveness 
and ease of  use, and that loosely defned collaborations evolve around shared open 
source tools. Finally we discuss best practices for experimental metadata capture in such 
facilities, data access and the new challenges of  scale and complexity posed by AI-based 
discovery for the synthesis of  new materials.
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Introduction

The National Synchrotron Light Source II (NSLS-II)1 operating at Brookhaven National 
Laboratory (BNL) since 2014 for the US Department of  Energy (DOE) is one of  the 
newest and brightest storage-ring synchrotron facility in the world. With 25 beamlines in 
operation, four under construction, and over 30 planned, it has already served more 
than 1,000 distinct scientists conducting x-ray characterization experiments in 2017, 
projected to increase up to 1,300 for 2018. Experiments conducted by users from the 
academic, government and industry sectors and facilitated by the beamline scientifc 
staff  acquire data with a range of  high throughput detectors. Because today’s 
experiments are conducted as ensembles or groups of  related experiments rather than 
single experiments, users and their samples tend to move between detectors at the same 
facility and between facilities, taking advantage of  the different characterization 
methods available across the world . Facilities follow a general pattern of  acquiring data 
from samples using high precision instruments, reducing data and reconstructing 
images, and enabling near real-time analysis. However, the wide variety of  detectors, 
data acquisition methods, storage systems, and data curation philosophies present 
signifcant challenges to users and data management support teams at the facilities . 
These challenges are addressed by using and customizing open source software shared 
between loosely defned collaborations.

NSLS-II, like other facilities, provides pre-processing of  the raw data, and some 
analysis capabilities to its users. While preparing a sample for an experiment and 
applying for beamline time takes months, users typically spend between a few hours 
(beamtime is allocated in eight hours shifts) to a few days on site to perform their 
experiments. The complex data acquisition process produces large volumes of  raw data 
in the form of  images and multi-dimensional data describing the experimental process. 
Preliminary processing of  theses experimental images outputs derived data and is 
provided at the facility. Preliminary processing aims to remove experimental artefacts 
and convert from instrumental units (e.g. angle) into physics units (e.g. d-spacing) during 
the allocated beamline sessions. Increasing computing power at the beamline is required 
to monitor an experiment in progress and to accommodate the growing frame rate of  
new detectors. In addition to increasing data volumes it is necessary to provide 
processing and analytical feedback to a user as quickly as possible to allow adjustment of 
experimental parameters such as intensity, position of  the detectors, or sample 
environment conditions (e.g. temperature). This presents additional challenges for the 
infrastructure in terms of  storage and computing performance as larger volumes of  data 
needs to be stored and analysed in short periods of  time.

This paper describes the research collaborations and open source infrastructure 
developed at large experimental facilities, such as NSLS-II, for the purpose of  curating 
high value scientifc data in the early stages of  the data lifecycle . We show the specifcity 
of  data management and curation at large facilities, emphasizing aspects of  metadata, 
discovery, and integration with analysis. We demonstrate that, in such facilities, curation 
activities must be embedded into software along the data life cycle and that effective 
collaborations evolve around shared open source tools. In addition we discuss best 
practices for experimental metadata capture, data access and the new challenges of  scale 
and complexity posed by AI-based discovery for the synthesis of  new materials. Efforts 

1 National Synchrotron Light Source-II: https://www.bnl.gov/ps/
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to provide data infrastructure at NSLS-II include the development of  a common data 
acquisition system called Bluesky2 and a storage system software named Databroker. We 
increase the impact of  these systems by promoting enriched data discovery and 
provenance tracking across beamlines. Bluesky is already being adopted at other light 
sources in the US, namely the Linac Coherent Light Source (LCLS), and the Advanced 
Photon Source (APS).

Related Effots

An overview of  data curation and preservation challenges at other large scale, 
experimental facilities is provided in (Matthews, Crompton, Jones, & Lambert, 2015), 
focused on the programs launched by the UK Science and Technology Facilities 
Council (STFC). Preserving scientifc data by itself  is not suffcient to secure future 
understanding of  physical phenomena, this requires curating and preserving many other 
research objects associated with experimental context and set-up, instruments and their 
calibrations, raw data transformations, and computational analyses. Curation and 
preservation of  research objects and artefacts (RO), rather than data, has been well 
advocated; ROs contain organized, semantically rich resources aggregated into units of  
knowledge (Bechhofer, De Roure, Gamble, Goble and Buchan, 2010). As noted in a 
recent review of  the Materials Genome Initiative (MGI) high throughput experimental 
methodologies (Green et al., 2017), materials science lags behind in data curation, data 
access, standardized data formats, and optimized coordination. The result is 
underdeveloped interaction between research efforts, the kind that would fully exploit 
existing infrastructure elements and promote opportunistic discoveries on a large scale in 
energy production, conversion, and storage, catalysts, microelectronics, and other areas.

Previous efforts related to metadata include the Core Scientifc MetaData (CSMD) 
(Matthews et al., 2010) and the NFFA-Europe efforts. CSMD, developed within STFC, 
describes data from experimental facilities with core concepts (including datafle, dataset, 
investigation, investigator, software version, parameter), facility descriptions (shift, 
instrument, facility-cycle, facility scientist, etc.) and others. “Sample” is included as 
Auxiliary Information alongside format and type, and cannot be described in details 
with this format. While instantiations of  CSMD focus on raw data, the extended version 
of  CSMD describes derived data, the analysis process, and attributes of  analysis 
software (Yang, Matthews and Wilson, 2013). The Nanostructures Foundries and Fine 
Analysis (NAFFA-Europe) is an effort that brings together European research labs 
providing access to characterization methods and computation at the nanoscale. This 
effort aims at federating data management and curation for facilities in the European 
Union, the scope of  its metadata includes description across the entire data life cycle. As 
such, the high-level metadata vocabulary element “sample” needs to be further 
specifed, as our own effort does.

2 Bluesky: https://nsls-ii.github.io/bluesky 

IJDC  |  General Article

https://nsls-ii.github.io/bluesky


doi:10.2218/ijdc.v14i1.637 Pouchard, Kleese and Campbell   |   117

Experimental Data Infrastructure at NSLS-II

NSLS-II Data Acquisitifn System

Figure 1. Schematic representation of  experimental data workfow at NSLS-II beamlines. This 
workfow independently runs at each of  the beamlines. Once acquired, metadata is 
stored in a Databroker database and data in a fle system partition for each beamline.

At the core of  the NSLS-II data acquisition and data management system is an 
essential set of  fexibly structured data stores (see Figure 1) . These stores are accessed 
using the Databroker Application Programmer’s Interface (API). This set of  data stores 
are tailored for specifc types of  experiments, and store not only the raw data from a 
detector, but also additional metadata from the beamline, accelerator, logbooks, the 
proposal system, sample management and scheduling systems.  The Databroker is a key 
piece of  data handling interface software3. It enables the development of  data analysis 
procedures for visualization and analysis of  the real-time data to allow decision making, 
and for post-processing of  all data after the actual experiment, without the scientist 
having to worry about the specifc on-disk data format or representation. The main aim 
is to be able to separate the data I/O code from the scientifc code by providing a 
common data API to all of  the experimental data, irrespective of  where it comes from, 
or what format it is stored in.

NSLS-II beamline data acquisition system is built to provide an essential 
infrastructure that can grow and evolve over the life of  the facility. NSLS-II has 
developed a suite of  open source software packages that not only support new detectors 
and new techniques as they continue to evolve, but also allows the analysis of  the quality 
of  the data as it is being collected and the performance of  the beamline. The user facing 
package is called Bluesky and is for experiment control and the collection of  scientifc 
data and metadata that is stored in Databroker databases. Bluesky interacts with the 
beamline hardware through the standard programming language, Python using the 
EPICS interfacing software.

At the start of  this project, centralized computing resources for data management 
and analysis at NSLS-II are in the planning stages. The Databroker high level features 
include search on metadata with searchable felds customized at each beamline, 
automated end-of-run data export to industry-standard formats, a sample management 

3 Databroker: https://nsls-ii.github.io/databroker 
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inventory database, and a service architecture to allow remote access to Databroker 
functionality. Our effort extends the Databroker solution and promotes searchability 
across beamlines by designing search mechanisms across multiple databases and a 
sample metadata schema for use in the NSLS-II facility.

Scienti�c Metadata ffo Sample Descoiptifn

This section presents our efforts and results in designing a metadata schema that will 
describe user samples. A metadata schema describing samples was not available for our 
users at NSLS-II. Standard fle formats exist for crystallography data, a branch of  
materials science leading the way with standard descriptions; a crystal is a material 
characterized by a lattice pattern of  microscopic structures. The Crystallography 
Information File and Framework (CIF) is a fat fle format (text) representing the 
structure of  a material (Hall and McMahon, 2005). The CIF, designed in 1990, has 
been very successful at combining text and scientifc data in a format both human- and 
machine-readable and has been adopted by numerous journals, databases, and users to 
archive and distribute crystallographic information. CIFs include unique identifers as a 
CIF ID, citation details including a DOI, a version number, and scientifc data 
describing for instance the position and angles of  atoms in a crystal, space group, and 
more. The CIF standards has enabled the development of  over a hundred open source 
software modules in use by the community since its inception4. The inclusion of  both 
scientifc data describing a particular compound and the citation details of  the original 
citing paper in a single text fle ensures keeping track of  a provenance trace for a crystal 
structure deposited in a CIF database. Referencing a CIF is one way to embed curation 
in software development and data life cycles for an experiment. A CIF cross-reference in 
any schema opens the possibility of  exploiting a standard format with its associated tools 
and referenced sources.

We designed a metadata schema for samples that captures how samples are 
presented to a beam. In our project, samples are described by several main objects: a 
constituent object, and a container object itself  made of  a geometry object, an out-of-
beam constituent object and an in-beam constituent object. Constituents describe the 
chemistry of  the sample and its container. Taken together, these describe sample 
structure and the conditions present at the beam when examining a sample. The 
container object describes the environment containing a sample presented to a beam. 
The sample can be characterized outside its operating environment (e.g. a sample in air) 
and/or where the studied properties arise (e.g. a compound in a gas at a certain 
temperature and pressure, a catalyst in an acid solution). The schema includes attributes 
such as sample maker, collaborators, Principle Investigator group, preparation start-date, 
tags, and common name. In addition, our schema harnesses the extensive data and 
metadata descriptions in CIFs by including a CIF ID and its corresponding CIF 
database in the constituent object. CIF IDs are unique identifers only in the context of  
the CIF database they belong to; as quality and degree of  curation in these databases 
vary, it is important to reference the source of  a CIF. Sample common names are a 
convenient way for referring to sample representing combinations of  chemical elements 
and reactions, for instance titanium dioxide. But materials with the same name could 
have different properties due to variations in their atomic structure. Mention of  a CIF 
and its original database source in sample metadata ensures that the measured 
properties in the experiment can be compared to a known structure. CIF curation is 
harnessed into our metadata at an early stage of  the experiment. Further curation of  

4 IUCr Crystallographic Information Framework: https://www.iucr.org/resources/cif/software

IJDC  |  General Article

https://www.iucr.org/resources/cif/software


doi:10.2218/ijdc.v14i1.637 Pouchard, Kleese and Campbell   |   119

metadata in our system is ensured by the use of  google forms linked to validation scripts 
for data entry testing for values in required felds.

Discfveoy Acofss Multiple Beamlines

The design of  new materials and compounds with predicted properties that achieve 
specifc physical and chemical requirements under given experimental conditions are a 
key scientifc advancement in materials science and a major goal of  characterizing the 
physical structure of  new material samples at the atomic level using particle accelerators. 
Traditionally new materials are synthesized following domain experts’ intuition 
informed by deep knowledge and guiding the process. The choice of  materials may be 
dictated by computational structures and the scientifc literature. New samples, for 
instance crystals grown in labs, are then examined in a beam for solving their structure, 
and computational analysis is performed to determine physical properties. In order to 
retain a competitive innovation advantage, for a research organization, a company, and 
nationwide, it is necessary to accelerate this process of  discovery and automate the 
search for new combinations of  elemental structures that may result in materials with 
the desired physical properties. This is the goal of  the Material Genome Initiative, with 
its named analogy to genomics and reference to the large scale automated discovery 
enabled by sequencing genomes. In order to fulfl the promise of  automated discovery in 
materials, infrastructure must be built that provides connections between multiple data 
sources, databases, experimental notebooks, and the scientifc literature. Numerous 
databases exist that focus on experimental or computational structures and properties, 
but the connections between these building blocks are missing. Only when many data 
sources can be assembled by providing connecting infrastructure can we hope to scale 
up discovery and take advantage of  the “big data” opportunities offered by high 
throughput detectors.

In our effort at NSLS-II, we are building one such connection by enabling search 
across the metadata stores of  multiple beamlines using the open source, highly scalable 
and extensible, commodity software Elasticsearch5 (ES). Our goal is to enable federated 
search across large, heterogeneous data sources, such as databases with different 
schemas, no schema, and other sources such as fles, providing one of  the many 
connections needed between existing infrastructure components. Using ES, scientist 
users visiting the facility are able to quickly look up the parameters and calibration of  a 
prior experiment they have performed at our facility during their current experiment.  
Samples brought to NSLS-II for an experiment may have been examined with other 
detectors. With ES, users can search across experiments performed at several beamlines 
and other sources in one interface. We built an ES index from felds in Databroker 
metadata databases. The ES index accepts JSON documents as input, with multiple 
benefts for our goal: frst, no complex mapping is required to implement search across 
multiple database felds; and second, database content, and fat fles can co-exist in the 
same index. This last feature enables bringing to users additional data sources not part 
of  Databroker.  Our system supports searching reference structures in CIF format from 
the Crystallography Open Database (COD)6, an open access collection of  fles for 
organic, inorganic, and metal-organics compounds and minerals. As our sample 
metadata includes a CIF ID feld, a user can quickly look up CIF references from COD 
and experiment parameters from Databroker in the same search interface. The user will 
fnd additional details such as the original citing paper, space group, atomic coordinates, 

5 Open Source Search and Analytics: https://www.elastic.co/
6 Crystallography Open Database: http://www.crystallography.net/cod/
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etc. that are included with CIF for their sample during their experiment. ES also 
supports powerful search functions that include numerical ranges and fuzzy search, 
which takes care of  the erratic use of  hyphens and typos in chemical compound 
searches (Ni-Ca vs. Ni Ca, “perofskit” instead of  perovskite). 

Pofvenance Labels ffo Stoeaming Image Analysis

Advanced analysis capabilities provided at NSLS-II are specifc to each beamline as 
techniques vary greatly according to the experimental and analysis mode. In our 
streaming analysis pipeline now deployed at two beamlines the computational tasks 
required to perform analysis are organized in a workfow as a Directed Acyclic Graph 
(DAG) (Pouchard, et al., 2019). A DAG is a network of  connected nodes representing 
processes on the data, each with input and output, and an order of  execution. An 
example of  simple analysis is the calculation of  statistics for a window of  several images 
streaming from the acquisition system. Our system provides a provenance label and a 
timestamp for each node in the analysis workfow graph and its data. The labels 
associate an experimental scan plan and data IDs from Databroker. The DAG workfow 
execution analyzes images while data acquisition from the experiment is still in progress 
(streaming). In addition, using the provenance labels, a user can review the 
computational steps for each data transformation from the retrieved images to the fnal 
results. This review facilitates the validation of  results while an experiment is in progress. 
After an experiment has completed, users can run the computational workfow again, 
assured that they are using the exact same data and conditions to verify their results. 
The provenance labels provide access to every node of  the computational graph so that 
users can also re-run the workfow varying data input, and analysis parameters as 
desired. The attribution of  provenance labels in streaming analysis supports quality 
control of  results, replication of  analysis, and brings us one step closer to reproducibility 
of  an experiment.

Discussion and Lessons Learned

Sample Metadata

Sample metadata has been a crucial and somewhat neglected piece in the materials 
characterization process. In addition to the elements noted above, details about the 
manufacturing of  the sample would be useful. However, users may be uninterested in 
providing even minimum details about their sample as a result of  habit or due to lack of 
time. They may also be reluctant to disclose details even when strict permissions are in 
place to safeguard intellectual property. Another obstacle to providing detailed metadata 
is that users may know only basic information, such as chemical composition, for their 
samples: they come to the beamline to learn more. High throughput detectors enabling 
the characterization of  sample collections are relatively new, and users have not felt the 
need historically to record metadata using methods other than spreadsheets and lab 
notebooks. Metadata recorded with these methods are not easily searchable, shareable, 
and interoperable. A part of  the solution is to require users to fll out some metadata 
relevant to scientifc research when they request time allocation to a beamline. While 
facilities usually request basic safety information about a sample for transport and 
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removal (e.g. has it been irradiated?), few request that users add scientifc metadata as 
well. For instance, the Spallation Neutron Source (SNS) at Oak Ridge National Lab 
includes a Description metadata element (which can include a chemical formula) and a 
state element (e.g. single crystal, powder). The Diamond Light Source facility in the UK 
requires more extensive sample metadata such as function of  the sample, sample type 
(state) and container descriptions to be flled out from a controlled vocabulary.

At some beamlines operating at NSLS-II, users are required to capture some 
metadata before the beam is activated and are encouraged to fll out additional 
metadata felds. Referencing published structures for chemical compounds and their 
atomic-level characterizations in the constituent object of  our schema using a CIF value 
is an essential part of  embedded curation that provides a link to previous results. As a 
best practice, all beamlines should implement similar requirements, thus helping to 
move towards embedded curation in systems they already use, such as the proposal 
system and safety information forms. This practice would ensure that at least some 
scientifc metadata is captured, but it is insuffcient by itself  as many characteristics of  
the sample are discovered after experiment and analysis. Thus easy-to-use mechanisms 
for capturing scientifc metadata for samples further down the experimental process are 
needed in addition.

Data Access and Shaoing

The discovery system provides incentives to users for adding more metadata about the 
sample to their experiments. Based on self-assessment of  users at one beamline, it is 
clear that they immediately perceived the added value of  our discovery system as they 
can search in the COD available through our discovery system for reference structures 
during their experiment. Returning users are able to compare their current experiment 
parameters and resulting images with those performed months before or with a different 
detector. Even a minimal amount of  metadata such as atomic count in chemical 
composition goes a long way towards enhancing the impact of  the discovery system.

One major obstacle to automated data discovery on a large scale in materials is the 
lack of  data access and the ubiquitous presence of  paywalls. The culture of  open access 
to data and publications in materials science is in its infancy when compared to other 
disciplines such as biology. For instance, during a demonstration of  our discovery 
system, domain experts noted that the Inorganic Crystal Structure Database7 would be a 
better source of  CIF fles than COD because its content is constantly updated and 
curated and its reference structures are of  better quality. We could bring this content 
into our system by negotiating access policies and costs. BNL libraries have negotiated 
access for manual search and download of  individual structures, however bulk access via 
API suitable for computational processing remains elusive. While COD is open source, 
free, and suffcient for prototyping purposes, a production system for NSLS-II would 
require access to higher quality structures.

From a broader perspective, users in materials science are less reluctant to share 
their data with colleagues they know than providing access to the general community. 
Data portals are seen as enablers for collaboration within the scope of  a project. Sharing 
data at the early stages of  a research life cycle allows scientists to get better help from 
data experts with setting up analysis. Describing samples and experiments with a 
common format available in a data portal promotes modelling studies both pre- and 
post-experiment (pre-experiment modelling, as takes place in experimental design, 
fosters a principled, systematic approach to data collection). A reluctance to sharing raw 

7 Inorganic Crystal Structure Database: http://www2.fz-karlsruhe.de/icsdNhome.html
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data, even within the scope of  a project, sometimes comes from the fear of  being 
misunderstood, as more advanced but proprietary analysis software not available to all 
members may lead to different conclusions. The role of  funding agencies in requiring 
that materials data be made more accessible, for instance in following up with promises 
made in data management plans, cannot be underestimated. 

Data Pflicies

In contrast to the European facilities, such as those under the UK STFC, many US 
facilities have not all adopted data archival policies. For instance the APS does not 
provide any long term data archiving and management in its policies. LCLS Data 
Retention Policy distinguishes between types of  data (raw, derived, results) with different 
tiers of  access (front or deep storage) and back-up for the length of  retention (from four 
months to two years and more). NSLS-II has kept all data and images since its frst fight 
in 2014, is now committed to a minimum data retention and access period of  one year, 
and is implementing a multi-tier storage policy. A User Agreement between BNL and 
the user home institution is put in place that covers liability, intellectual property, and 
fnancial fees (when the experiment is performed by a user affliated with a for-proft 
institution). Users transfer data to their institutions via networks and leave for home with 
backup copies on portable devices. Data volume is one of  the obstacles to preservation 
often cited by facilities. As data grow, transferring these data over networks becomes 
precarious, even with the reliance upon robust transfer protocols. Increasingly, analysis 
capabilities that provide data reduction onsite are provided at NSLS-II and other user 
facilities, resulting in lower data volumes for transfer. While facilities in the US should 
develop strong data policies, institutional motivation to do so is growing. Making a 
strong business case for preservation, such as described in (Matthews, Crompton, Jones 
and Lambert, 2015) is needed to overcome the cultural and fnancial obstacles inherent 
in developing and implementing such policies.

Machine Leaoning (ML) ffo Mateoials Discfveoy

The relatively new advent of  ML-based discovery for synthesizing new materials 
presents additional challenges to curation. The materials science disciplines are 
represented in numerous databases that could in principle form the basis for building 
training models and drawing statistical inferences. Performing large parameter sweeps 
across millions of  structures and properties in databases, relating them in a meaningful 
way, and aggregating feature sets are required tasks to produce promising designs and 
simulate future experiments. Training models require large amounts of  representative 
data in order to perform accurate predictions. Materials science databases contain either 
large numbers of  similar types of  samples (for instance in ICSD) or small numbers of  
diverse ones but not both. Databases can be specialized for types of  materials (for 
instance inorganic thin flm materials, organic polymers) and methods of  data 
acquisition (Zakutayev et al., 2018). Despite the appearance of  abundant data, the 
specialization in small data sources and lack of  diversity in large ones can impede the 
creation of  accurate models. Examples of  curated, materials structures that have been 
successfully used for ML applications can be found in the Materials Project, however 
these are computational structures obtained from ab initio calculations, and not 
experimental structures . Both types of  structures are needed to achieve the goal of  
initiatives like the MGI.

IJDC  |  General Article
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Another challenge when applying ML to materials design is the precision and 
completeness of  metadata found in existing databases. Properties of  existing materials 
and samples relevant to properties algorithms are trying to predict must be present in 
training samples in order to draw inferences with a reasonable degree of  accuracy. 
Multiple relevant properties must also be present to enable aggregation in feature sets 
for ML algorithms to perform. If  metadata is incomplete, this can result in exclusion of  
records from data used to train models, further reducing the potential size of  training 
sets. Another consequence of  incomplete metadata is the poor accuracy of  predictions.   
The quality of  datasets should be quantifed for metadata completeness, as such weights 
could be used in model tuning. The curation tasks performed at NSLS-II include sample 
data annotation with metadata elements and storing experimental confgurations, as 
described in the previous sections. To improve curation, NSLS-II could require its users 
to fll out most metadata felds instead of  the few currently required. Synthesis 
parameters, such as manufacturing temperatures and pressures for new samples, are not 
currently included in our sample metadata but could be required as well as they are 
instrumental in determining properties.

Cfllabfoatifns Thofugh Open Sfuoce Sfftwaoe

Collaborations are key to the effective deployment and customization of  infrastructure 
at a large experimental facility. They are loosely defned as teams form and dissolve 
around a specifc project, a software installation, a demo or a shared short-term purpose. 
The quality of  the open source software exemplifed in the extent of  documentation and 
availability of  support infuences effectiveness. While standardization from national or 
international institutions is not required, using software that other institutions also use 
builds familiarity and facilitates adoption of  tools by users, especially for the growing 
number of  users who move between facilities. Diversity of  skills and experience in our 
teams and an ability and willingness to communicate across disciplines, in this case 
physicists, chemists, material scientists, computer scientists, and curation experts is 
crucial to the success of  our effort, with computer and data scientists often providing the 
glue through the tools they develop.

Our effort aligns well with MGI through high-level collaborations. In particular, we 
will deposit our schema into the NIST Materials Data Curation System (MDCS), one 
project of  the High-Throughput Experimental Materials Collaboratory in MGI, once 
MDCS becomes operational. MDCS will allow describing, depositing and sharing 
materials metadata in its repositories thanks to user-defned schema templates. The 
purpose is to create a nationwide federated network of  materials data and experiments 
focused on all aspects from materials synthesis to characterization by sharing software 
tools, federating repositories, and interoperable metadata. However, providing open 
access to metadata schemas, as with MDCS, is only a frst step towards interoperability.  
Adoption of  software developed by other facilities appears sometimes easier than re-
using metadata developed elsewhere.

No facility will have the expertise and resources to develop all the software necessary 
to cover the wide variety of  experiments done at the NSLS-II. To facilitate community 
participation, NSLS-II has organized the frst of  a series of  hackathons with other 
participants from other facilities and hosted the New Opportunities for Better User Group 
Software (NOBUGS) conference in 2018, a meeting aimed at promoting interactions 
between engineers and scientists working on software for X-ray, neutron and muon sources 

around the world. Collaborations through the Research Data Needs of  the Photon and 
Neutron Science Community Interest Group (PaNSIG) at the Research Data Alliance is 

IJDC  |  General Article



124   |   Experimental Data Curation doi:10.2218/ijdc.v14i1.637

a more formally organized effort aiming to support better data management and 
curation practices in large facilities. Focused on common scientifc fle formats, 
metadata, and persistent identifers (including for instruments and samples), this effort 
points to the future for more robust data curation practices at experimental facilities, 
such as NSLS-II.

Embedding curation of  raw and derived data at the beamline is a good step towards 
the preservation of  valuable experimental results but not suffcient to ensure the 
reproducibility of  fnal results. A wide dissemination of  software developed for NSLS-II 
is well established through open versioning and software repositories, such as GitHub 
and bitbucket, but preservation is not guaranteed for the long term. Local policies 
ensuring a unifed approach to curation at NSLS-II are in progress.
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