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Abstract

Software and in particular source code became an important component of  scientific 
publications and henceforth is now subject of  research data management. Maintaining 
source code such that it remains a usable and a valuable scientific contribution is and 
remains a  huge task.  Not all  code contributions can be actively maintained forever. 
Eventually, there will be a significant backlog of  legacy source-code. In this article we 
analyse the requirements for applying the concept of  long-term reusability to source 
code. We use simple case study to identify gaps and provide a technical infrastructure 
based on emulator to support automated builds of  historic software in form of  source 
code.
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Introduction

Software and software citation has become an important ingredient for research data 
publications and henceforth research data management. The growing importance of  
software developed as part of  research projects makes it an integral part of  a research 
paper, necessary for review, validation, reuse and collaboration (Katz et al., 2021; Smith 
et al., 2016). The importance of  software as part of  a scientific publication is 
increasingly recognized by researchers, funders and publishers (e.g., Barker et al., 2020).

In particular, in the context of  scientific publications, cited software needs to remain 
findable, accessible and usable, and thus needs to be preserved and managed over time. 
Concepts that are applied to research data, e.g., FAIR data principles (Wilkinson et al., 
2016) need to be mirrored for software too (e.g., FAIR4RS1, Lamprecht et al., 2020; 
Hasselbring et al., 2021). To support these practices, guides (e.g., Chue Hong et al., 
2019) and polices (Monteil et al., 2020) have been published as well as usable 
infrastructure for archiving (scientific) software and source code became available. For 
instance, Software Heritage, a non-profit organization, offers, together with other source 
code preservation services, a self-archiving option2, which allows individuals to submit a 
code repository for archiving (Di Cosimo, 2020).

The currently available infrastructure covers well most of  the proposed FAIR 
principles for software, however, the reusable property is still a difficult one and we argue, 
there is a gap to be filled – in particular, ensuring long-term re-use of  software is a 
growing concern.

Currently, a common recommendation is to focus on community engagement, 
software design and good software engineering (Collberg and Proebsting, 2016) and 
thus, sharing the maintenance burden, e.g., by porting code to new platforms and 
upgrading or replacing software and hardware dependencies (Katz and McHenry, 
2021). Mimicking the successful open-source ecosystem of  the past 30+ years seems a 
viable approach for popular software with a significant user community. However, 
scientific communities are scattered and considerably smaller, creating specialized 
scientific software only of  interest for a small number of  specialists. But even rather 
popular software will be eventually abandoned by its community, moving on with 
scientific and technical progress.

In this article we analyze the requirements for applying the concept of  long-term 
reusability to source code, a very common form of  scientific software. We use a technical 
implementation to identify gaps in current practices.

Reusability of  Scientific Source Code

Software is more vulnerable to a technical life-cycle than research data, as it poses more 
complex requirements on its technical environment. Data, for instance, might be re-used 
in the future with then contemporary software, or if  its format and structure is well 
documented and understood, it may be migrated to a then contemporary format. In 
contrast, software, specifically in form of  binaries require a suitable runtime platform, 

1 FAIR 4 Research Software Working Group: https://rd-alliance.org/groups/fair-research-software-
fair4rs-wg

2 Software Heritage: https://save.softwareheritage.org 
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e.g., a specific CPU, implementing a specific instruction set architecture3 (ISA), to 
execute machine instruction, but additionally a specific operating system (and version) as 
well as a number of  compatible libraries. For long-term usage of  software in form of  
executable binaries, virtualization (Larsen et al., 2012) and eventually emulation can be 
a suitable solution when accompanied with a comprehensive collection of  software 
dependencies. There are frameworks and initiatives fostering the use of  emulation and 
various aspects of  structured software collection (Rechert et al., 2020; Rosenthal, 2015).4

Software developed in the context of  research projects is usually published and 
shared in the form of  source code to support reproduction. In contrast to binaries, 
source code differs significantly with respect to future re-use. Source code is available in 
text form and remains human readable over time. It contains exact information about 
how a specific program has been made, usually supported through inline comments 
made by the developers, important for scientific transparency but also to allow others to 
improve and develop the code further.

For some re-use purposes, accessing source code in text form is sufficient, i.e., to 
extract parameters or other specific aspects of  a scientific model. However, non-trivial 
programs easily reach ten thousand or more lines of  code and thus, reaching a 
complexity that is difficult to follow and especially very difficult to understand and 
predicting its behavior in context of  a complex task. In order to use software (e.g., to 
process large data sets) in form of  source code, it either needs an appropriate interpreter 
(e.g., for scripts written in Perl or Python) or needs to be compiled to a native ISA (e.g., 
in case of  C/C++ source code).

The foreseeable obsolescence of  contemporary technology poses an even bigger 
threat to source code. To build (compile) software from source code, additional software 
dependencies (e.g., the so called toolchain) are necessary. These dependencies are 
typically distinct from the binary’s dependencies required to run and may consist of  
various types of  libraries, source code (e.g., header files) as well as tools to (pre-)process 
to code, translate the code into machine instruction and tools to automate and 
orchestrate this process. Furthermore, the build process itself  may be non-trivial and 
error prone, such that it can be difficult to guarantee a successful build and even more 
important, that the binary works as intended.

(Re-)Building Software from Source Code

Building software from source code can be a challenging task. For this, build tools are 
required, e.g., a compiler usually accompanied by tools for pre-processing, dependency 
analysis, build orchestration and packaging. Additionally, computer programs are built 
on top of  existing functionality, available in form of  libraries. These libraries are usually 
independently developed and maintained. Updated versions of  a library may introduce 
incompatible changes how a function should be called, i.e., the number and kind of  
arguments the caller needs to pass, but also the function’s semantics may change, e.g., 
the result returned may change structurally or semantically. The same applies to how 
build-tools process code and in particular, what is assumed implicitly and what not. 

For instance, even when using a standardized programming language like “C” with a 
long tradition of  carefully maintained open-source tools (here the GNU compiler suite 

3 E.g., Intel’s x86 architecture is currently one of  the most popular instruction set architecture (ISA).
4 Emulation as a Service Infrastructure (EaaSI): 

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/
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(GCC)) building ancient code is not trivial, as demonstrated by a simple experiment5 
rebuilding the GCC compiler in version 1.27 released 1988 in a contemporary 
environment. Even though the code itself  was syntactically quite compatible with 
contemporary compilers and the experiment was successful in the end, still 
modifications of  the original source code (even though in a small number) were required 
and thus, the availability of  sufficient knowledge on the specific programming language 
and other build process specifics. For the purpose of  improved reproducibility, ideally a 
successfully built software should reference then the respective build environment, which 
should be captured and archived in addition to the author’s narrative to prevent another 
future trial and error approach. 

Hence, a further problem is to document and archive not only a program’s runtime 
dependencies but also its build environment. Source code is usually published with a 
“README” or similarly named file with instructions to build the code, accompanied 
with some hints on required build and runtime dependencies – typically libraries. These 
descriptions often refer to systems available when the software was released, i.e., 
describing package names for different operating systems or Linux distributions but 
usually without explicit versioning. If  version information is provided, a minimum 
version is referenced but usually not the last compatible version. More importantly, these 
instructions are written for humans and are not machine actionable. The Software 
Heritage archive recommends adding additional, structured metadata when archiving 
source code (Di Cosimo, 2020). Current practice, e.g., using the proposed CodeMeta 
schema (Jones at al., 2017) aims mostly towards improving findability but not yet 
supporting a re-build of  source code. Future versions of  archived versions may close this 
gap, however, as an intermediate solution and in particular for already archived and now 
unmaintained code, maintain the ability to recreate the “original” build environments, 
i.e., keeping the original Linux environment accessible and usable, is already a good 
starting point, not only for a “basic” re-build, but also as a starting point to improve 
metadata and documentation as well as a starting point to explore re-use of  the software 
in other scenarios.

Rebuilding a program from source and re-run it without an error does not always 
imply successful reproduction, e.g., of  scientific result. Benureau and Rougier (2018) 
provide more nuanced criteria for reproducibility of  scientific code contribution, 
ranging from re-runnable (R1) over reproducible (R3) to being fully replicable (R5). 
They show by example that a small, subtle variation of  a Python version (3.2 vs. 3.3) will 
lead to different outcomes, even though the code itself  has been executed successfully. 
With growing complexity of  scientific workflows, the complexity of  the dependency 
chain and the number of  different libraries and tools used will also grow. To ensure 
reproducible or even fully replicable results of  software-based process, being able to 
instantiate all software components in a defined version is an important precondition. 
These dependencies might not always be available in the exact specified version in a pre-
compiled (binary) archived version and therefore, may have to be compiled from source 
code.

Finally, the most difficult task when re-building source code is to verify that a binary 
program originates from a given source code snapshot, i.e., one can reproduce the exact 
same binary for instance, by comparing the hash values of  the binary sample and the 
binary built from source. For instance, initiatives like the Reproducible Builds project6 
aim to develop guidelines and infrastructure for developers to ensure reproducibility of  

5 See: https://web.archive.org/web/20210124204244/ and https://miyuki.github.io/2017/10/04/gcc-
archaeology-1.html 

6  Reproducible Builds project: https://reproducible-builds.org/ 
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their builds to proof  integrity and provenance of  a published binary. This is not only 
important for security research, e.g., that a distributed binary does not contain 
additional (malicious) code and is a result of  (peer-)reviewed source code. Reproducible 
builds are also important to allow traceability of  development and binary management. 
If  a binary is lost or it has not been preserved, it can be rebuilt exactly as it was. 
Additionally, different stages of  the development cycle can be re-staged, tracing 
regressions, bugs or major improvements. Thus, deterministic reproduction of  research 
results also relies on a deterministic software toolchain, which allows for introspection 
and links source code and program behavior. While general concepts and solutions for 
reproducible builds are outside of  the scope of  this paper, to ensure such properties in 
the long-term, not only the necessary build environment and tools need to be preserved 
and be re-usable, it is also necessary to ensure a stable and controlled emulated build 
environment.

Automating Historic Builds – A Case Study

Regardless of  how the code will be (re-)used, infrastructure and automation are crucial 
to ensure that a large code-base can be used and to mitigate a widening knowledge gap 
over time.

To illustrate how workflows for rebuilding and re-using source code can be 
implemented, we chose the simple, aforementioned Python example from Benureau and 
Rougier (2018):

import random
random.seed(1) # RNG initialization
x = 0
walk = []
for i in range(10):

 step = random.choice([-1,+1])
 x += step
 walk.append(x)
 print(walk)

# Saving output to disk
with open('results-R2.txt', 'w') as fd:

 fd.write(str(walk))

The code snippet implements a random walk. A random number generator (RNG) 
chooses ten times either +1 or -1. In order to make this code deterministic and long-
term reproducible, the random generator is initialized with the fixed seed value ‘1’ (line 
2). Due to changes in the Python RNG, from version 3.3, the output of  the code above 
is [-1, -2, -1, -2, -1, 0, 1, 2, 1, 0] instead of  the expected output of  [-
1, 0, 1, 0, -1, -2, -1, 0, -1, -2] prior to that change. In order to replicate 
scientific code contributions built on prior version of  Python, either the code of  the 
contribution needs to be adapted, which may introduce additional problems, or the 
contribution is executed with the original tool chain. In the following, we demonstrate 
usage of  a specific Python version installed from source code.
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Preparations

In order to build an archived software project both the source code needs to be retrieved 
and a suitable build environment needs to be prepared. For the aforementioned use-case 
we require a specific Python version. A complete development history of  Python is 
available from the Software Heritage archive in form of  an archived Git repository. As a 
first step, the relevant snapshot or version of  the source code has to be identified. 
Currently it remains a manual task to identify the commit hash, for instance, based on a 
symbolic version number.

The Software Heritage archive offers a RESTful API7 to retrieve content in an 
automated way. It is important to note that the Git commit hashes are globally stable 
identifiers, i.e., the commit hashes found on public Git repositories hosted by providers 
such as GitHub, GitLab, etc., remain valid if  retrieved through the Software Heritage 
API. For this case study, the relevant commit hash is 
ccc4ffe7a1e2ae151959446722bf1b58834f5e9f (the last commit for version 3.1)8.

The EaaS(I) framework has been extended with a plug-in to retrieve source code 
from the Software Heritage archive by commit hash9. An alternative solution could be 
accessing the archive through a FUSE filesystem, which became recently available 
(Allançon, Pietri, and Zacchiroli, 2021) and is currently evaluated. The result is a 
snapshot of  the source-tree as a compressed archive, ready for further processing.

The second preparatory step is to identity a suitable build environment. If  the build 
instructions are not machine-actionable or they contain no detailed information on 
build dependencies (and versions thereof), a viable approach is to provide the user with a 
basic build environment from that time as an interactive emulation session (e.g., a 
preinstalled historic Linux distribution). Depending on the chosen environment, 
additional software, libraries or build tools are required. This step can be carried out 
manually within an interactive session allowing users to experiment with source-code in 
a historic software environment. Installing software dependencies requires a software 
archive, e.g., in case of  a packaged-based distribution like Debian, a working package 
repository. If  pre-packaged build- and runtime-dependencies are not available, a re-
build from source code might also be necessary, adding an additional recursive workflow 
step.

In order to support stable, automated re-builds, references to external repositories 
have to be carefully managed and maintained. For instance, Debian distributions prior 
to release 8 (2015-2018) are not available anymore under the initially (pre-configured 
through the installation media) configured URLs but are moved to a dedicated archive.10 

Similar archives exist for other Linux distributions. If  archived prepackaged software 
dependencies are available (and the use of  an archived version is necessary), these are 
usually not directly usable, but have to be manually configured in the build system. In 
order to ensure automated (re-)builds and to reduce maintenance overhead of  archived 
build environments, the EaaS framework offers a “managed” network, i.e., emulated 
machines in such a network are isolated from the “live” internet and access to external 
network resources are managed. A dedicated Linux repository proxy service 
transparently keeps old repository URLs working, while serving the requests for 
contemporary archives. These mappings are generic and apply to any available 

7 Software Heritage API: https://archive.softwareheritage.org/api/1/ 
8 This URL points to the last v3.1 commit: 

https://archive.softwareheritage.org/browse/revision/ccc4ffe7a1e2ae151959446722bf1b58834f5e9f/?
origin_url=https://github.com/python/cpython 

9 See: https://github.com/Aeolic/swh-downloader 
10 Debian archive server: http://archive.debian.org/debian/
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emulated environment, such that installed Linux systems do not have to be updated 
every time package repositories are deprecated or moved. Additionally, these mappings 
can also be used for other archived network resources, e.g., pip, CPAN, npm, etc.

The preparation workflow is primarily designed for initial setup, experiments and 
quality assurance and eventually should yield re-usable environments. Once a system 
has been configured, the user has two options to preserve the ready-made build 
environment. One option is to preserve a snapshot of  the emulated machine’s disk with 
all required dependencies installed and configured. This pragmatic option, however, 
limits re-use of  the build environment to a specific case. Re-use in similar cases requires 
additional manual adaption and may require individual maintenance in the future. A 
second, more re-useable solution, would keep the base environment unchanged and 
maintain all object-specific installation and configuration steps as an executable shell 
script or, if  possible, in the form of  abstract machine-actionable metadata. Ideally, the 
resulting recipe can be executed in different environments, e.g., to find the latest 
compatible version.

For the purposes of  this example, we chose a plain Debian 9 (released in 2017) with 
Python v3.5.3 installed as well as additional dependencies, e.g., a C/C++ compiler and 
essential build utilities.

Build Automation

Starting with a reference to a source code snapshot (e.g., Software Heritage commit 
hash) and an identified build environment, ideally, all build steps are orchestrated and 
executed by the framework without any additional user-interaction in a similar way of  
automated builds offered by today’s public code repositories (i.e., continuous integration 
(CI) jobs). To support this, two technical problems are to be solved: firstly, to “inject” 
data into the emulated machine and, secondly, to reliably “autostart” the build process. 
Both functionalities should be as generic as possible, such that they can be applied to a 
wide range of  different emulated systems. However, both are tied (at least to some 
degree) to the guest operating system.

In case of  injecting data into an emulated system, one can consider multiple options. 
A quite generic option to transport data into a guest system are CD-ROMs, as their 
filesystem (ISO9660) is widely supported. However, in order to build code, the filesystem 
usually needs to be writeable, thus leaving the task of  organizing the data within the 
guest environment to the user’s build script. Another option could be to create a 
secondary virtual hard disk on the fly and format the disk with a common, widely 
supported file system (e.g., FAT32). But this solution also has similar drawbacks because 
the secondary disk has to be detected by the guest operating system and mounted as user-
visible directory (Linux) or drive (Windows). In both cases, the user has to anticipate the 
guest operating system’s behavior and has to prepare the build recipe accordingly. 
Additionally, this complicates the task of  automated executions within an emulated 
guest. While the current EaaS(I) framework supports both ways, we have implemented a 
third option to improve deterministic behavior and re-use of  build recipes with different 
build environments. For this, the emulated system’s main disk (e.g., the disk and partition 
the operating systems is installed on) is modified and the user (or the system’s metadata) 
has to specify the target partition, filesystem, and the final destination of  the source code 
on the disk.

Additionally, the user has to provide the recipe, i.e., a script that carries out the 
actual build, together with additional build parameters (e.g., a result of  the preparation 
process).
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Finally, the framework needs to provide a generic and deterministic way for 
automated runs of  the build process in order to support scheduled, non-interactive 
build-jobs. As a quite generic solution for Linux environments, we utilize the cron 
subsystem, a built-in job scheduler developed in 1975 and still supported in almost any 
UNIX-like operating system11, to initiate the build after the guest system has booted. For 
this, the EaaS(I) framework modifies the crontab of  the build environment accordingly.

Any modifications of  the build system (source code and build script injection, 
autostart, etc.) are carried out at execution time and are non-persistent by default. 
Figure 1 shows the user interface to setup an automated historic build.

Figure 1.UI to setup an automated historic information.

(Re-)using Build Results

The build process can be partly interactive, allowing users to observe the pre-defined 
build steps and interact with the system if  necessary, e.g., to debug or improve the build 
recipe. However, the service is designed to run batch jobs without user interaction, 
orchestrated through a RESTful API.

As a result, two different outcomes are possible, both designed to use the result in 
other workflows, either in a different workflow (system) or as a pipelined workflow within 
EaaS(I). One possible result is an emulated machine with a modified disk image which 
contains the (installed) build result. This machine can be used either for a further build 

11 See: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html 
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job, e.g., in case of  a dependency build, or for the build result to be used with actual 
data. The alternative is a downloadable archive containing a user-defined result 
directory. The user’s build recipe should then copy any desired output to the predefined 
directory. In case of  a scheduled, non-interactive workflow, the result is kept available for 
the user to download.

The description of  the build environment (in this example additional installation 
steps on top of  a default Debian 9 installation) and, optionally, the build image together 
with the build recipe can be archived and linked to the archived source. This does not 
only support future re-use of  the code itself  but can be a valuable starting point for 
similar code.

Results and Discussion

Maintaining source code such that it remains a usable and valuable scientific 
contribution is and remains a huge task. Not all code contributions can be actively 
maintained forever. Eventually, there will be a significant backlog of  legacy source-code.

A major step is to maintain access to suitable technical ecosystems. Emulation (and 
emulation frameworks) provide a basic infrastructure. Still, adapted workflows are 
required to provide simplified, ideally fully automated, access to source-code, automated 
builds, and simple re-use of  built code with data. We have demonstrated a technical 
solution for such workflows within the EaaS(I) emulation framework, however, we still 
lack machine-actionable metadata, both to describe the build requirements and 
necessary build steps.

Furthermore, in order to ensure long-term builds, all inputs to the build process need 
to be controlled. For instance, automated, networked package management systems and 
build systems, which utilize online repositories, e.g., Debian repositories, pip, CPAN, 
npm, etc., require attention. Firstly, these need to be archived. Additionally, these 
archives need to be integrated into the staged build environment. The archives may be 
hosted under different domains, cryptographic keys and certificates may have expired. 
We have demonstrated the usage of  a virtual network environment providing the 
necessary services. Our next steps will focus on the formalization of  this process as 
structured machine-actionable metadata.
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