
IJDC | Conference Paper

How Long Can We Build It? Ensuring Usability of a
Scientific Code Base

Klaus Rechert
University of Freiburg

Jurek Oberhauser
University of Freiburg

Rafael Gieschke
University of Freiburg

Abstract

Software and in particular source code became an important component of scientific
publications and henceforth is now subject of research data management. Maintaining
source code such that it remains a usable and a valuable scientific contribution is and
remains a huge task. Not all code contributions can be actively maintained forever.
Eventually, there will be a significant backlog of legacy source-code. In this article we
analyse the requirements for applying the concept of long-term reusability to source
code. We use simple case study to identify gaps and provide a technical infrastructure
based on emulator to support automated builds of historic software in form of source
code.

Received 08 April 2021 ~ Accepted 19 April 2021

Correspondence should be addressed to Klaus Rechert, Hermann Herder Str 10, 79104 Freiburg, Germany. Email:
klaus.rechert@rz.uni-freiburg.de

An earlier version of this paper was presented at the 16th International Digital Curation Conference.

The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the
University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
Licence, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2021, Vol. 16, Iss. 1, 11 pp.

1 http://dx.doi.org/10.2218/ijdc.v16i1.770
DOI: 10.2218/ijdc.v16i1.770

http://dx.doi.org/10.2218/ijdc.v16i1.770
http://www.ijdc.net/
mailto:klaus.rechert@rz.uni-freiburg.de

2 | How Long Can We Build It?

Introduction

Software and software citation has become an important ingredient for research data
publications and henceforth research data management. The growing importance of
software developed as part of research projects makes it an integral part of a research
paper, necessary for review, validation, reuse and collaboration (Katz et al., 2021; Smith
et al., 2016). The importance of software as part of a scientific publication is
increasingly recognized by researchers, funders and publishers (e.g., Barker et al., 2020).

In particular, in the context of scientific publications, cited software needs to remain
findable, accessible and usable, and thus needs to be preserved and managed over time.
Concepts that are applied to research data, e.g., FAIR data principles (Wilkinson et al.,
2016) need to be mirrored for software too (e.g., FAIR4RS1, Lamprecht et al., 2020;
Hasselbring et al., 2021). To support these practices, guides (e.g., Chue Hong et al.,
2019) and polices (Monteil et al., 2020) have been published as well as usable
infrastructure for archiving (scientific) software and source code became available. For
instance, Software Heritage, a non-profit organization, offers, together with other source
code preservation services, a self-archiving option2, which allows individuals to submit a
code repository for archiving (Di Cosimo, 2020).

The currently available infrastructure covers well most of the proposed FAIR
principles for software, however, the reusable property is still a difficult one and we argue,
there is a gap to be filled – in particular, ensuring long-term re-use of software is a
growing concern.

Currently, a common recommendation is to focus on community engagement,
software design and good software engineering (Collberg and Proebsting, 2016) and
thus, sharing the maintenance burden, e.g., by porting code to new platforms and
upgrading or replacing software and hardware dependencies (Katz and McHenry,
2021). Mimicking the successful open-source ecosystem of the past 30+ years seems a
viable approach for popular software with a significant user community. However,
scientific communities are scattered and considerably smaller, creating specialized
scientific software only of interest for a small number of specialists. But even rather
popular software will be eventually abandoned by its community, moving on with
scientific and technical progress.

In this article we analyze the requirements for applying the concept of long-term
reusability to source code, a very common form of scientific software. We use a technical
implementation to identify gaps in current practices.

Reusability of Scientific Source Code

Software is more vulnerable to a technical life-cycle than research data, as it poses more
complex requirements on its technical environment. Data, for instance, might be re-used
in the future with then contemporary software, or if its format and structure is well
documented and understood, it may be migrated to a then contemporary format. In
contrast, software, specifically in form of binaries require a suitable runtime platform,

1 FAIR 4 Research Software Working Group: https://rd-alliance.org/groups/fair-research-software-
fair4rs-wg

2 Software Heritage: https://save.softwareheritage.org

IJDC | Conference Paper

https://save.softwareheritage.org/
https://rd-alliance.org/groups/fair-research-software-fair4rs-wg
https://rd-alliance.org/groups/fair-research-software-fair4rs-wg

Rechert, Oberhauser and Gieschke | 3

e.g., a specific CPU, implementing a specific instruction set architecture3 (ISA), to
execute machine instruction, but additionally a specific operating system (and version) as
well as a number of compatible libraries. For long-term usage of software in form of
executable binaries, virtualization (Larsen et al., 2012) and eventually emulation can be
a suitable solution when accompanied with a comprehensive collection of software
dependencies. There are frameworks and initiatives fostering the use of emulation and
various aspects of structured software collection (Rechert et al., 2020; Rosenthal, 2015).4

Software developed in the context of research projects is usually published and
shared in the form of source code to support reproduction. In contrast to binaries,
source code differs significantly with respect to future re-use. Source code is available in
text form and remains human readable over time. It contains exact information about
how a specific program has been made, usually supported through inline comments
made by the developers, important for scientific transparency but also to allow others to
improve and develop the code further.

For some re-use purposes, accessing source code in text form is sufficient, i.e., to
extract parameters or other specific aspects of a scientific model. However, non-trivial
programs easily reach ten thousand or more lines of code and thus, reaching a
complexity that is difficult to follow and especially very difficult to understand and
predicting its behavior in context of a complex task. In order to use software (e.g., to
process large data sets) in form of source code, it either needs an appropriate interpreter
(e.g., for scripts written in Perl or Python) or needs to be compiled to a native ISA (e.g.,
in case of C/C++ source code).

The foreseeable obsolescence of contemporary technology poses an even bigger
threat to source code. To build (compile) software from source code, additional software
dependencies (e.g., the so called toolchain) are necessary. These dependencies are
typically distinct from the binary’s dependencies required to run and may consist of
various types of libraries, source code (e.g., header files) as well as tools to (pre-)process
to code, translate the code into machine instruction and tools to automate and
orchestrate this process. Furthermore, the build process itself may be non-trivial and
error prone, such that it can be difficult to guarantee a successful build and even more
important, that the binary works as intended.

(Re-)Building Software from Source Code

Building software from source code can be a challenging task. For this, build tools are
required, e.g., a compiler usually accompanied by tools for pre-processing, dependency
analysis, build orchestration and packaging. Additionally, computer programs are built
on top of existing functionality, available in form of libraries. These libraries are usually
independently developed and maintained. Updated versions of a library may introduce
incompatible changes how a function should be called, i.e., the number and kind of
arguments the caller needs to pass, but also the function’s semantics may change, e.g.,
the result returned may change structurally or semantically. The same applies to how
build-tools process code and in particular, what is assumed implicitly and what not.

For instance, even when using a standardized programming language like “C” with a
long tradition of carefully maintained open-source tools (here the GNU compiler suite

3 E.g., Intel’s x86 architecture is currently one of the most popular instruction set architecture (ISA).
4 Emulation as a Service Infrastructure (EaaSI):

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

IJDC | Conference Paper

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

4 | How Long Can We Build It?

(GCC)) building ancient code is not trivial, as demonstrated by a simple experiment5
rebuilding the GCC compiler in version 1.27 released 1988 in a contemporary
environment. Even though the code itself was syntactically quite compatible with
contemporary compilers and the experiment was successful in the end, still
modifications of the original source code (even though in a small number) were required
and thus, the availability of sufficient knowledge on the specific programming language
and other build process specifics. For the purpose of improved reproducibility, ideally a
successfully built software should reference then the respective build environment, which
should be captured and archived in addition to the author’s narrative to prevent another
future trial and error approach.

Hence, a further problem is to document and archive not only a program’s runtime
dependencies but also its build environment. Source code is usually published with a
“README” or similarly named file with instructions to build the code, accompanied
with some hints on required build and runtime dependencies – typically libraries. These
descriptions often refer to systems available when the software was released, i.e.,
describing package names for different operating systems or Linux distributions but
usually without explicit versioning. If version information is provided, a minimum
version is referenced but usually not the last compatible version. More importantly, these
instructions are written for humans and are not machine actionable. The Software
Heritage archive recommends adding additional, structured metadata when archiving
source code (Di Cosimo, 2020). Current practice, e.g., using the proposed CodeMeta
schema (Jones at al., 2017) aims mostly towards improving findability but not yet
supporting a re-build of source code. Future versions of archived versions may close this
gap, however, as an intermediate solution and in particular for already archived and now
unmaintained code, maintain the ability to recreate the “original” build environments,
i.e., keeping the original Linux environment accessible and usable, is already a good
starting point, not only for a “basic” re-build, but also as a starting point to improve
metadata and documentation as well as a starting point to explore re-use of the software
in other scenarios.

Rebuilding a program from source and re-run it without an error does not always
imply successful reproduction, e.g., of scientific result. Benureau and Rougier (2018)
provide more nuanced criteria for reproducibility of scientific code contribution,
ranging from re-runnable (R1) over reproducible (R3) to being fully replicable (R5).
They show by example that a small, subtle variation of a Python version (3.2 vs. 3.3) will
lead to different outcomes, even though the code itself has been executed successfully.
With growing complexity of scientific workflows, the complexity of the dependency
chain and the number of different libraries and tools used will also grow. To ensure
reproducible or even fully replicable results of software-based process, being able to
instantiate all software components in a defined version is an important precondition.
These dependencies might not always be available in the exact specified version in a pre-
compiled (binary) archived version and therefore, may have to be compiled from source
code.

Finally, the most difficult task when re-building source code is to verify that a binary
program originates from a given source code snapshot, i.e., one can reproduce the exact
same binary for instance, by comparing the hash values of the binary sample and the
binary built from source. For instance, initiatives like the Reproducible Builds project6
aim to develop guidelines and infrastructure for developers to ensure reproducibility of

5 See: https://web.archive.org/web/20210124204244/ and https://miyuki.github.io/2017/10/04/gcc-
archaeology-1.html

6 Reproducible Builds project: https://reproducible-builds.org/

IJDC | Conference Paper

https://reproducible-builds.org/
https://web.archive.org/web/20210124204244/

Rechert, Oberhauser and Gieschke | 5

their builds to proof integrity and provenance of a published binary. This is not only
important for security research, e.g., that a distributed binary does not contain
additional (malicious) code and is a result of (peer-)reviewed source code. Reproducible
builds are also important to allow traceability of development and binary management.
If a binary is lost or it has not been preserved, it can be rebuilt exactly as it was.
Additionally, different stages of the development cycle can be re-staged, tracing
regressions, bugs or major improvements. Thus, deterministic reproduction of research
results also relies on a deterministic software toolchain, which allows for introspection
and links source code and program behavior. While general concepts and solutions for
reproducible builds are outside of the scope of this paper, to ensure such properties in
the long-term, not only the necessary build environment and tools need to be preserved
and be re-usable, it is also necessary to ensure a stable and controlled emulated build
environment.

Automating Historic Builds – A Case Study

Regardless of how the code will be (re-)used, infrastructure and automation are crucial
to ensure that a large code-base can be used and to mitigate a widening knowledge gap
over time.

To illustrate how workflows for rebuilding and re-using source code can be
implemented, we chose the simple, aforementioned Python example from Benureau and
Rougier (2018):

import random
random.seed(1) # RNG initialization
x = 0
walk = []
for i in range(10):

 step = random.choice([-1,+1])
 x += step
 walk.append(x)
 print(walk)

Saving output to disk
with open('results-R2.txt', 'w') as fd:

 fd.write(str(walk))

The code snippet implements a random walk. A random number generator (RNG)
chooses ten times either +1 or -1. In order to make this code deterministic and long-
term reproducible, the random generator is initialized with the fixed seed value ‘1’ (line
2). Due to changes in the Python RNG, from version 3.3, the output of the code above
is [-1, -2, -1, -2, -1, 0, 1, 2, 1, 0] instead of the expected output of [-
1, 0, 1, 0, -1, -2, -1, 0, -1, -2] prior to that change. In order to replicate
scientific code contributions built on prior version of Python, either the code of the
contribution needs to be adapted, which may introduce additional problems, or the
contribution is executed with the original tool chain. In the following, we demonstrate
usage of a specific Python version installed from source code.

IJDC | Conference Paper

6 | How Long Can We Build It?

Preparations

In order to build an archived software project both the source code needs to be retrieved
and a suitable build environment needs to be prepared. For the aforementioned use-case
we require a specific Python version. A complete development history of Python is
available from the Software Heritage archive in form of an archived Git repository. As a
first step, the relevant snapshot or version of the source code has to be identified.
Currently it remains a manual task to identify the commit hash, for instance, based on a
symbolic version number.

The Software Heritage archive offers a RESTful API7 to retrieve content in an
automated way. It is important to note that the Git commit hashes are globally stable
identifiers, i.e., the commit hashes found on public Git repositories hosted by providers
such as GitHub, GitLab, etc., remain valid if retrieved through the Software Heritage
API. For this case study, the relevant commit hash is
ccc4ffe7a1e2ae151959446722bf1b58834f5e9f (the last commit for version 3.1)8.

The EaaS(I) framework has been extended with a plug-in to retrieve source code
from the Software Heritage archive by commit hash9. An alternative solution could be
accessing the archive through a FUSE filesystem, which became recently available
(Allançon, Pietri, and Zacchiroli, 2021) and is currently evaluated. The result is a
snapshot of the source-tree as a compressed archive, ready for further processing.

The second preparatory step is to identity a suitable build environment. If the build
instructions are not machine-actionable or they contain no detailed information on
build dependencies (and versions thereof), a viable approach is to provide the user with a
basic build environment from that time as an interactive emulation session (e.g., a
preinstalled historic Linux distribution). Depending on the chosen environment,
additional software, libraries or build tools are required. This step can be carried out
manually within an interactive session allowing users to experiment with source-code in
a historic software environment. Installing software dependencies requires a software
archive, e.g., in case of a packaged-based distribution like Debian, a working package
repository. If pre-packaged build- and runtime-dependencies are not available, a re-
build from source code might also be necessary, adding an additional recursive workflow
step.

In order to support stable, automated re-builds, references to external repositories
have to be carefully managed and maintained. For instance, Debian distributions prior
to release 8 (2015-2018) are not available anymore under the initially (pre-configured
through the installation media) configured URLs but are moved to a dedicated archive.10

Similar archives exist for other Linux distributions. If archived prepackaged software
dependencies are available (and the use of an archived version is necessary), these are
usually not directly usable, but have to be manually configured in the build system. In
order to ensure automated (re-)builds and to reduce maintenance overhead of archived
build environments, the EaaS framework offers a “managed” network, i.e., emulated
machines in such a network are isolated from the “live” internet and access to external
network resources are managed. A dedicated Linux repository proxy service
transparently keeps old repository URLs working, while serving the requests for
contemporary archives. These mappings are generic and apply to any available

7 Software Heritage API: https://archive.softwareheritage.org/api/1/
8 This URL points to the last v3.1 commit:

https://archive.softwareheritage.org/browse/revision/ccc4ffe7a1e2ae151959446722bf1b58834f5e9f/?
origin_url=https://github.com/python/cpython

9 See: https://github.com/Aeolic/swh-downloader
10 Debian archive server: http://archive.debian.org/debian/

IJDC | Conference Paper

http://archive.debian.org/debian/
https://github.com/Aeolic/swh-downloader
https://archive.softwareheritage.org/browse/revision/ccc4ffe7a1e2ae151959446722bf1b58834f5e9f/?origin_url=https://github.com/python/cpython
https://archive.softwareheritage.org/browse/revision/ccc4ffe7a1e2ae151959446722bf1b58834f5e9f/?origin_url=https://github.com/python/cpython
https://archive.softwareheritage.org/api/1/

Rechert, Oberhauser and Gieschke | 7

emulated environment, such that installed Linux systems do not have to be updated
every time package repositories are deprecated or moved. Additionally, these mappings
can also be used for other archived network resources, e.g., pip, CPAN, npm, etc.

The preparation workflow is primarily designed for initial setup, experiments and
quality assurance and eventually should yield re-usable environments. Once a system
has been configured, the user has two options to preserve the ready-made build
environment. One option is to preserve a snapshot of the emulated machine’s disk with
all required dependencies installed and configured. This pragmatic option, however,
limits re-use of the build environment to a specific case. Re-use in similar cases requires
additional manual adaption and may require individual maintenance in the future. A
second, more re-useable solution, would keep the base environment unchanged and
maintain all object-specific installation and configuration steps as an executable shell
script or, if possible, in the form of abstract machine-actionable metadata. Ideally, the
resulting recipe can be executed in different environments, e.g., to find the latest
compatible version.

For the purposes of this example, we chose a plain Debian 9 (released in 2017) with
Python v3.5.3 installed as well as additional dependencies, e.g., a C/C++ compiler and
essential build utilities.

Build Automation

Starting with a reference to a source code snapshot (e.g., Software Heritage commit
hash) and an identified build environment, ideally, all build steps are orchestrated and
executed by the framework without any additional user-interaction in a similar way of
automated builds offered by today’s public code repositories (i.e., continuous integration
(CI) jobs). To support this, two technical problems are to be solved: firstly, to “inject”
data into the emulated machine and, secondly, to reliably “autostart” the build process.
Both functionalities should be as generic as possible, such that they can be applied to a
wide range of different emulated systems. However, both are tied (at least to some
degree) to the guest operating system.

In case of injecting data into an emulated system, one can consider multiple options.
A quite generic option to transport data into a guest system are CD-ROMs, as their
filesystem (ISO9660) is widely supported. However, in order to build code, the filesystem
usually needs to be writeable, thus leaving the task of organizing the data within the
guest environment to the user’s build script. Another option could be to create a
secondary virtual hard disk on the fly and format the disk with a common, widely
supported file system (e.g., FAT32). But this solution also has similar drawbacks because
the secondary disk has to be detected by the guest operating system and mounted as user-
visible directory (Linux) or drive (Windows). In both cases, the user has to anticipate the
guest operating system’s behavior and has to prepare the build recipe accordingly.
Additionally, this complicates the task of automated executions within an emulated
guest. While the current EaaS(I) framework supports both ways, we have implemented a
third option to improve deterministic behavior and re-use of build recipes with different
build environments. For this, the emulated system’s main disk (e.g., the disk and partition
the operating systems is installed on) is modified and the user (or the system’s metadata)
has to specify the target partition, filesystem, and the final destination of the source code
on the disk.

Additionally, the user has to provide the recipe, i.e., a script that carries out the
actual build, together with additional build parameters (e.g., a result of the preparation
process).

IJDC | Conference Paper

8 | How Long Can We Build It?

Finally, the framework needs to provide a generic and deterministic way for
automated runs of the build process in order to support scheduled, non-interactive
build-jobs. As a quite generic solution for Linux environments, we utilize the cron
subsystem, a built-in job scheduler developed in 1975 and still supported in almost any
UNIX-like operating system11, to initiate the build after the guest system has booted. For
this, the EaaS(I) framework modifies the crontab of the build environment accordingly.

Any modifications of the build system (source code and build script injection,
autostart, etc.) are carried out at execution time and are non-persistent by default.
Figure 1 shows the user interface to setup an automated historic build.

Figure 1.UI to setup an automated historic information.

(Re-)using Build Results

The build process can be partly interactive, allowing users to observe the pre-defined
build steps and interact with the system if necessary, e.g., to debug or improve the build
recipe. However, the service is designed to run batch jobs without user interaction,
orchestrated through a RESTful API.

As a result, two different outcomes are possible, both designed to use the result in
other workflows, either in a different workflow (system) or as a pipelined workflow within
EaaS(I). One possible result is an emulated machine with a modified disk image which
contains the (installed) build result. This machine can be used either for a further build

11 See: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

IJDC | Conference Paper

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

Rechert, Oberhauser and Gieschke | 9

job, e.g., in case of a dependency build, or for the build result to be used with actual
data. The alternative is a downloadable archive containing a user-defined result
directory. The user’s build recipe should then copy any desired output to the predefined
directory. In case of a scheduled, non-interactive workflow, the result is kept available for
the user to download.

The description of the build environment (in this example additional installation
steps on top of a default Debian 9 installation) and, optionally, the build image together
with the build recipe can be archived and linked to the archived source. This does not
only support future re-use of the code itself but can be a valuable starting point for
similar code.

Results and Discussion

Maintaining source code such that it remains a usable and valuable scientific
contribution is and remains a huge task. Not all code contributions can be actively
maintained forever. Eventually, there will be a significant backlog of legacy source-code.

A major step is to maintain access to suitable technical ecosystems. Emulation (and
emulation frameworks) provide a basic infrastructure. Still, adapted workflows are
required to provide simplified, ideally fully automated, access to source-code, automated
builds, and simple re-use of built code with data. We have demonstrated a technical
solution for such workflows within the EaaS(I) emulation framework, however, we still
lack machine-actionable metadata, both to describe the build requirements and
necessary build steps.

Furthermore, in order to ensure long-term builds, all inputs to the build process need
to be controlled. For instance, automated, networked package management systems and
build systems, which utilize online repositories, e.g., Debian repositories, pip, CPAN,
npm, etc., require attention. Firstly, these need to be archived. Additionally, these
archives need to be integrated into the staged build environment. The archives may be
hosted under different domains, cryptographic keys and certificates may have expired.
We have demonstrated the usage of a virtual network environment providing the
necessary services. Our next steps will focus on the formalization of this process as
structured machine-actionable metadata.

References

Allançon, T., Pietri, A., & Zacchiroli, S. (2021, May). The Software Heritage Filesystem
(SwhFS): Integrating Source Code Archival with Development. In ICSE 2021: the
43rd International Conference on Software Engineering.

Barker, M., Katz, D. S., & Gonzalez-Beltran, A. (2020, June 8). Evidence for the
importance of research software. Zenodo. doi:10.5281/zenodo.3884311

Benureau, F., & Rougier, N. P. (2018). Re-run, repeat, reproduce, reuse, replicate:
Transforming code into scientific contributions. Frontiers in Neuroinformatics, 11, 69.
doi:10.3389/fninf.2017.00069

IJDC | Conference Paper

https://doi.org/10.3389/fninf.2017.00069
http://doi.org/10.5281/zenodo.3884311

10 | How Long Can We Build It?

Di Cosimo, R. (2020, July). Archiving and referencing source code with Software
Heritage. In International Congress on Mathematical Software (pp. 362-373).
Springer, Cham.

Chue Hong, N. P., Allen, A., Gonzalez-Beltran, A., de Waard, A., Smith, A. M.,
Robinson, C., … Pollard, T. (2019, October 15). Software Citation Checklist for
Authors (Version 0.9.0). Zenodo. doi:10.5281/zenodo.3479199

Collberg, C. & Proebsting, T. A. (2016). Repeatability in computer systems research.
Communications of the ACM, 59(3):62–69, February 2016. doi:10.1145/2812803

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR
research data toward FAIR and open research software. it – Information Technology,
62(1), 39-47. doi:10.1515/itit-2019-0040

Jones, M. B., Boettiger, C., Cabunoc Mayes, A., Slaughter, P., Gil, Y., Chue Hong, N., &
Goble, C. (2017). CodeMeta. Retrieved from
http://ssi1.eprints-hosting.org/id/eprint/2/

Katz, D.S., Chue Hong, N.P., Clark, T. et al. (2021). Recognizing the value of software:
A software citation guide [version 2; peer review: 2 approved]. F1000Research 2021,
9:1257. doi:10.12688/f1000research.26932.2

Katz, D., & Mchenry, K. (2021). Research Software Sustainability: Lessons Learned at
NCSA. In Proceedings of the 54th Hawaii International Conference on System
Sciences (p. 7249).

Lamprecht, A. L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico,
E., ... & Capella-Gutierrez, S. (2020). Towards FAIR principles for research software.
Data Science, 3(1), 37-5

Larsen, D. T., Blomer, J., Buncic, R., Charalampidis, I., & Haratyunyan, A. (2012).
Long-term preservation of analysis software environment. Journal of Physics:
Conference Series, 396(3):1–8, December 2012.

Monteil, A., Gonzalez-Beltran, A., Ioannidis, A., Allen, A., Lee, A., Bandrowski, A., ...
& Morrell, T. (2020). Nine best practices for research software registries and
repositories: A concise guide. arXiv preprint. arXiv:2012.13117.

Rechert K., Stobbe O., Zharkow O., Gieschke R., & Wehrle D. (2020). CITAR –
Preserving software-based research. International Journal of Digital Curation, 15(1).

Rosenthal, D. S. (2015). Emulation and Virtualization as Preservation Strategies.
Retrieved from https://web.stanford.edu/group/lockss/resources/2015-
10_Emulation_&_Virtualization_as_Preservation_Strategies.pdf

Smith, A. M., Katz, D. S., Niemeyer, K. E., & FORCE11 Software Citation Working
Group. (2016). Software citation principles. PeerJ Computer Science 2:e86
doi:10.7717/peerj-cs.86

IJDC | Conference Paper

https://doi.org/10.7717/peerj-cs.86
https://web.stanford.edu/group/lockss/resources/2015-10_Emulation_&_Virtualization_as_Preservation_Strategies.pdf
https://web.stanford.edu/group/lockss/resources/2015-10_Emulation_&_Virtualization_as_Preservation_Strategies.pdf
https://doi.org/10.12688/f1000research.26932.2
http://ssi1.eprints-hosting.org/id/eprint/2/
https://doi.org/10.1515/itit-2019-0040
https://dx.doi.org/10.1145/2812803
http://doi.org/10.5281/zenodo.3479199

Rechert, Oberhauser and Gieschke | 11

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak,
A., ... & Mons, B. (2016). The FAIR Guiding Principles for scientific data
management and stewardship. Scientific data, 3(1), 1-9.

IJDC | Conference Paper

	​ Introduction
	​ Reusability of Scientific Source Code
	​ (Re-)Building Software from Source Code
	​ Automating Historic Builds – A Case Study
	​ Preparations
	​ Build Automation
	​ (Re-)using Build Results

	​ Results and Discussion
	​ References

