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Abstract

Data curation is increasingly important. Our previous work on a Kepler curation 
package has demonstrated advantages that come from automating data curation 
pipelines by using workflow systems. However, manually designed curation workflows 
can be error-prone and inefficient due to a lack of user understanding of the workflow 
system, misuse of actors, or human error. Correcting problematic workflows is often 
very time-consuming. A more proactive workflow system can help users avoid such 
pitfalls. For example, static analysis before execution can be used to detect the potential 
problems in a workflow and help the user to improve workflow design. In this paper, 
we propose a declarative workflow approach that supports semi-automated workflow 
design, analysis and optimization. We show how the workflow design engine helps 
users to construct data curation workflows, how the workflow analysis engine detects 
different design problems of workflows and how workflows can be optimized by 
exploiting parallelism.
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Introduction and Motivation

Data curation is critical in many areas, such as the production and use of scientific data 
collections and repositories. For example, natural science collections data can often be 
rife with errors and inconsistencies, and reuse of collections data to address scientific 
questions imposes concerns of data quality and fitness for use upon the collection’s 
management community. We have continued our development of Kuration 1.0 (Dou et 
al., 2011), a software package and prototype for automating data curation pipelines with 
the Kepler scientific workflow system (Ludäscher et al., 2006). Several curation tools 
and services are integrated into this package as actors, enabling the construction of 
workflows to perform and document various data curation tasks.

The typical structure of a data curation workflow includes an input actor that reads a 
dataset from a remote or local source, a number of data curation actors that implement 
different data validation methods, and an output actor that writes the result into a file or 
a database.

Figure 1. Kuration 1.0: A Kepler/COMAD data curation workflow for collection-oriented data 
quality control.

Figure 1 shows a data curation workflow in the Kepler workflow system (Dou et al., 
2012) developed by using the COMAD workflow model (McPhillips et al., 2009). 
Boxes are actors (also known as processors, steps or modules) and arrows connecting 
them are data channels indicating the data flow between actors.

COMAD and the related data assembly line approach (Zinn et al., 2009a) are an 
improvement over the earlier and “conventional” way of designing workflows in 
Kepler, as they simplify the workflow design. Practical experience with our first 
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Kuration prototype, while promising (Dou et al., 2012), also yielded a number of 
technical challenges: 1) the use of remote services on large data collections, together 
with an unoptimized workflow execution model, creates scalability problems; and 2) the 
design, configuration and maintenance of workflows are not only time-consuming but 
also can be error-prone, e.g., the workflow design itself might have problems, such as 
incorrectly ordered actors in a workflow (see Q3 below).

In order to tackle these and related issues, we propose a visionary system that 
(semi-) automatically detects workflow design problems and optimizes workflow 
design. In the first phase, the design engine selects actors from a library of existing 
actors based on the user’s requirements and puts them together into a “workflow story” 
(i.e., a sequential order of actors). Alternatively, users can provide their own workflow. 
In the second phase, static analysis techniques are applied before runtime, which 
anticipate how a workflow might behave during runtime. Using workflow graph and 
actor configurations, corresponding data dependency information can be captured, 
which in turn can be used to identify possible design problems. In the third phase, the 
candidate designs are further improved or optimized (e.g., exploiting parallelism) in 
order to achieve better performance. The flowchart in Figure 2 shows how our system 
works.

Figure 2. Overview of the proposed workflow design, analysis and optimization system.

The remainder of this paper is organized as follows: first, we introduce our 
workflow model; next, we describe detailed design, analysis and optimization 
techniques and scenarios with examples; finally, we conclude with additional 
implementation details and a discussion of future work.

Workflow Model

The collection-oriented workflow modelling and design (COMAD) model with nested 
data model and scope configuration has shown great advantages for workflow design, 
such as improving workflow reusability, simplicity, predictability and ease of use 
(McPhillips and Bowers, 2005). Data curation workflows also deal with collection-
oriented data in most cases, so we propose a simplified workflow model that follows the 
principles of the COMAD model and models data curation workflows.
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Data Curation Workflow Model

Typically, the input of data curation workflows is structured as a data stream, which 
consists of a set of records. Each record contains a set of attribute-value pairs (or data 
items) and the value is a concrete data value.

A workflow consists of a set of actors, and the connection between two actors 
indicates how data flows. Each actor has exactly one input port and one output port. The 
input port takes a record from the data stream and invokes the actor on it, which 
produces an output with a similar structure to the input. One exception is for the first 
actor, usually the reader, which can be invoked with a special trigger by the workflow 
system while the actor’s input port is empty. Workflows in our model will always be 
linear workflows without looping and branching. Instead, looping and branching will be 
handled implicitly within the actors if needed (as in COMAD model).

Each data validation actor also contains a black-box and a configuration. The black-
box implements the actual data-processing logic. It is wrapped with a well-defined 
configuration, which includes a set of read scope functions for selecting relevant parts 
of the input data stream and a set of write scope functions for combining the result of 
the black-box with the unselected part of the data stream to form the output of the actor. 
Each black-box has a set of input ports and a set of output ports. For each data item read 
by a black-box on its input ports, the black-box either validates the data item and 
updates it, or reads this data item only during validation of other data items. The 
unselected part of the data stream is transported, bypassing the black-box, and forms 
part of the output of the actor. The above three types of dependencies between the input 
and output of the black-box (update, read, bypass) are crucial to establish the 
provenance of data items. Similar dependency declarations are used to infer detailed 
provenance in Bowers et al. (2012).

Abstract Provenance Graphs

In order to perform analysis and optimization on a data curation workflow, more 
information besides the workflow graph needs to be captured. Since each actor has a 
configuration that declares what data type the actor reads and writes, and the input data 
schema could be provided by the user, by combining the configurations of all the actors 
in a workflow with the input data schema, the behavior of each actor can be inferred by 
type matching. Here, we propose a data-oriented abstract provenance graph (Zinn and 
Ludäscher, 2010) called an Abstract Data Dependency Graph (ADG), which captures 
fine-grained data-dependency information of a workflow before workflow execution.

An ADG has a set of nodes, N, that represent data items (except for a source node 
representing workflow input and a sink node representing workflow output) and a set of 
edges, E, that represent dependencies among data items. Since different types of 
dependencies are created by actors, each edge has a label, T:A that indicates what type 
of dependency, T, the edge represents and which actor, A, creates this dependency1. In 
the following, we distinguish different types of dependencies. The variables X, X’ and Y 
denote nodes in N that are data items; Source and Sink are special nodes representing 
workflow input and output, respectively; and A is an actor. To indicate how a variable is 
used, we use subscripts:

1 For simplicity, the actor name is not shown in some of the examples.
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 update: Data item X is validated and replaced by an updated item X' during an 
invocation of actor A, i.e., X' ≔ A (Xupdate).

 read: Data item Y is used only as reference and stays unchanged after an 
invocation of actor A, i.e., X' ≔ A(Xupdate, Yread).

 bypass: Data item X is not used and remains the same after an invocation of 
actor A, i.e., X ≔ A(Xbypass).

 input: Only for the edges coming out of the source node to data item X as part of 
the workflow input, i.e., X ≔ Sourceinput

 output: Only for the edges going into the sink node from data item X as part of 
the workflow output, i.e., Sinkoutput ≔ X

Figure 3. Example of a data curation workflow (a) and its abstract data dependency graph (b).

Figure 3 shows a workflow and a corresponding ADG. Each actor in the workflow 
creates some dependencies among data items in the ADG. For example, “Flowering 
Time Validator” validates and updates “Reproductive Condition” and reads “Scientific 
Name” as reference during invocation. “Event Date” is not used by the actor so it is 
bypassed.

Workflow Design

In some cases, the user has a dataset and wants to run data curation workflows to 
perform data quality control work on the dataset. Here, we will focus on a more specific 
case where the user has a collection of data records and wants to perform data quality 
control only on certain data fields. As part of the input of our workflow system, the user 
will provide an input schema and select the data fields on which to perform data quality 
control work. For example, consider a biologist examining a set of specimen records 
who wants to check whether the data fields labeled “eventDate” and “scientificName” 
are valid. 
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Figure 4. Example showing how the design engine works: (a) an input data schema and a set of 
data fields (highlighted) that need to be curated, (b) an actor library, and (c) some of 
the candidate workflows generated by the design engine.

After the user’s requirements are specified, the design engine will try to pick a set of 
actors that can curate the specific data fields that the user selected and check whether all 
of the inputs of the actors are available in the input schema provided by the user. If 
some of the actors cannot be run, then the system will inform the user that some of the 
data curation work cannot be done. At the same time, if for some of the data fields that 
the user selects, no actor can be found that can perform the validation work, the system 
will inform the user that those data items cannot be curated.

If a set of actors can be obtained that meets the user’s requirements, then the design 
engine will generate a linear workflow using the set of actors and pass it to the analysis 
engine. If the analysis engine finds that this workflow has problems such that this 
workflow cannot be executed properly, then the design engine will either generate 
another workflow and pass it to the analysis engine again until a workflow without 
problems can be found, or inform the user that no workflow without problems can be 
obtained.

Of course, the workflow can be provided by the user, in which case this workflow 
will be fed into the analysis engine directly.

Workflow Analysis

The analysis engine starts with the ADG of an input workflow. Since ADGs contain 
fine-grained dependency information, potential design problems can be detected by 
applying a set of graph queries that act as constraints on the graph and checking 
whether the graph violates any of them. Some of the problems can be recognized as a 
graph pattern, e.g., a certain type of edge cannot occur after another type. In this case, 
we can simply query the ADG and check the result. If the result of a certain query is 
empty, which indicates that a certain pattern is not present in the graph, then its 
corresponding workflow does not have this type of problem. Otherwise, the workflow 
has this problem. Here, we show examples of constraints that can be written in the 
regular path query, which can be applied to ADGs to detect potential design problems.
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Duplicate Updates/Actors

In some cases, the same data item is validated multiple times in a data curation 
workflow. This is generally not necessary unless the user intends to do so. A constraint, 
“no duplicate updates,” can be enforced to warn the user about unnecessary validation 
steps, which can be formulated as:

Q1 update . bypass* . update = Ø

More specifically, the same actor may occur multiple times in a workflow but only 
one occurrence is needed. Thus, the constraint “no duplicate actors” can be enforced, 
which can be formulated as:

Q2 update:A . bypass* . update:A = Ø 

Figure 5. An example of duplicated updates/actors.

Workflow Ordering

In a workflow, one actor may read the output of a second actor; that is, the first actor 
depends on the second actor. A typical case in data curation workflows is that one 
validation actor validates a data item but also needs to read another data item as a 
reference during validation. In such cases, we need to enforce a constraint that each data 
item used as a reference must be validated first. Otherwise, actors may yield incorrect 
results. This constraint can be formulated as

Q3 input . bypass* . read = Ø 

Sometimes, the above constraint is so strong that, for some data items, no actor is 
available to perform validation. In such situations, we can enforce a weaker constraint 
that states, for each data item, that if a validation actor exists in the workflow that 
validates this data item, then this actor must be upstream of any other actors in the 
workflow that read this data item. This constraint can be formulated as:

Q4 read-1 . bypass* . update = Ø 
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Figure 6. Three cases of workflow ordering: (a) meets strong and weak constraint, (b) only 
meets weak constraint, and (c) doesn’t meet any constraint.

In Figure 6(a), the strong constraint is met since “SciName” is validated first, before 
being read. In Figure 6(b), the weak constraint is met since there is no “Scientific Name 
Validator” in the workflow. In such cases, it is permissible to use un-validated 
“SciName”. In Figure 6(c), neither of the constraints is met. There exists a “Scientific 
Name Validator” in the workflow that validates “SciName, ” but un-validated 
“SciName” is read before it is validated, which violates both constraints.

Workflow Optimization

ADGs can also be used to improve workflow design. Instead of constraints, 
optimization opportunities can be discovered by querying the ADG. If the query result 
is not empty, then some of the opportunities have not been exploited. Also, after the 
corresponding workflow has been improved, the same query can be applied again 
(whether or not the result is empty) to check whether this type of opportunity has been 
fully exploited. Here, we show examples of optimization opportunities written in the 
regular path query.

Data Forwarding

In collection-oriented workflows, each actor works on different parts of the input data 
and the rest of the data is forwarded, bypassing the actor. If a workflow contains several 
actors, then it is possible that some data items may be bypassed many times before an 
actor reads or validates them. This situation can be optimized by forwarding each data 
item to the actors that use it directly. This opportunity can be formulated as:

Q5 bypass . bypass . (read|update) ≠ Ø 
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After the workflow is improved, we can apply the above query (Q5) again to make 
sure all data forwarding is optimized.

Figure 7. Example showing how data items can be forwarded more efficiently.

In Figure 7(a), a data forwarding opportunity exists since “SciName” is not changed 
along multiple adjacent “bypass” edges. In Figure 7(b), all data forwarding 
opportunities have been exploited.

Parallelism

In Figure 3, the “Event Date Validator” can be run in parallel with the other two actors 
in the workflow since it only works on “Event Date”, which is not used by the other two 
actors. This situation can also be represented as “Flowering Time Validator” must be a 
downstream actor of “Scientific Name Validator.” In order to exploit data parallelism in 
a workflow, actor dependency information must be captured first. Dependencies among 
actors can be captured as partial orders between actors. The query to capture those 
partial orders can be formulated as:

Q6 update:Actor_A . bypass* . read:Actor_B ≠ Ø 

After dependency information is obtained, the analysis engine will try to rebuild a 
workflow in alternative ways that do not violate those dependencies (not illustrated).

Figure 8. Example of a data curation workflow with parallel execution.

In Figure 8, “Scientific Name Validator” and “Flowering Time Validator” are not 
independent since “Flowering Time Validator” reads the output of “Scientific Name 
Validator.” On the other hand, since “Event Date Validator” only works on “EventDate,” 
it is independent of the other two actors and can be run in parallel with them. The 
workflow in Figure 8 is more “parallel” than the workflow in Figure 3; all data items 
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generated by the actors will immediately be passed to the actors that read the items or 
form part of the final result of the workflow during execution. Thus, the workflow can 
be executed more efficiently.

Prototypical Implementation

We have implemented the first prototype of the proposed system using DLV2 for the 
workflow design, analysis and optimization engine. As an underlying parallel execution 
platform, we use Akka3, an actor-oriented data flow execution engine that has shown 
higher throughput than comparable Kepler workflows.

The input of the system is specified as a set of Datalog facts, including the workflow 
specification, input data schema and actor configuration. The system is implemented as 
Datalog programs, which perform design, analysis and optimization on the input of the 
system. The output of the system is a valid and optimized workflow encoded as a set of 
Datalog facts with some comments. These results will be presented to the user as 
feedback. If the user decides to use the improved workflow, the workflow will be fed 
into the execution engine. If not, the user will modify the requirements or specify the 
workflow directly and run the system again. The workflow in the execution engine will 
be transformed to a java source file, which will be executed through the Akka workflow 
execution framework.

Related Work

Workflow analysis and optimization in general have been widely studied. Basu and 
Blanning (2000, 2007) proposed a formal approach to workflow analysis based on data 
flow analysis using metagraphs. Meda et al., (2010) extended the data flow analysis 
approach above and proposed a graph traversal algorithm that maintains workflow 
correctness by detecting data flow errors, but they focus on distributed computing where 
data may be inconsistent among different computing nodes. Zinn et al. (2009b) 
developed X-CSR, an optimization technique that minimizes the data shipping cost in 
distributed settings by determining whether data stream fragments are relevant to an 
actor, thereby allowing irrelevant fragments to be bypassed. Ghoshal et al. (2013) took a 
similar approach to ours where static analysis is used to identify provenance information 
prior to a program execution. However, they focus on using static (abstract) provenance 
to better understand concrete provenance, not to improve workflow design. Cohen-
Boulakia et al. (2014) have developed an approach to detect and resolve workflow 
design problems based on graph refactoring. Similar work has also been done in the 
domain of business process management (Brogi et al., 2008) and process-aware 
information systems (Weber et al., 2008). However, little work focuses on collection-
oriented workflows. BioVeL (Vicario et al., 2011) is a virtual e-laboratory that supports 
biodiversity research by providing a web service and workflow library for data 
processing and curation.

2 DLV: http://www.dlvsystem.com
3 Akka: http://akka.io
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Conclusion and Future Work

In this paper, we propose a declarative system that supports automated design, analysis 
and optimization of data curation workflows. We start with a limited use case in which 
the user provides a set of natural science collection-oriented data and specifies what 
data fields they intend to run quality control work on. The design engine will construct a 
workflow according to the user’s requirements, and a generate-and-test loop is invoked 
until an error-free workflow design is obtained. The obtained workflow will be further 
optimized to achieve better performance and eventually be executed by the underlying 
workflow engine.

The resulting workflow can be optimized in different ways according to different 
optimization criteria. We only provide selected examples of such optimization, but more 
optimization techniques can be applied in the future. At the same time, we have only 
produced a prototype of our proposed system, and different parts of the system can be 
improved. For example, the user interface of our system is not very user friendly, and 
workflow execution is not automatic (it requires manual parameter setting).
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