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Abstract 

We show how two models of provenance can work together to answer basic questions about data 
provenance, such as “What computed variables were affected by values of variable X?”. Questions 
like this are central for understanding how data is managed and modified. W3C PROV is a widely 
used standard for describing the people, activities, and sources that create things like documents, a 
work of arts, and data sets. PROV associates processes with inputs and outputs, but it does not have 
a way to describe how data are changed within a process. PROV has no language for program 
components, like mathematical expressions or joining data tables.  Structured Data Transformation 
Language (SDTL) was designed to provide machine-actionable representations of data 
transformation commands in statistical analysis software. SDTL describes the inner workings of 
programs that are black boxes in PROV. However, SDTL is detailed and verbose, and simple queries 
can be very complicated in SDTL. Structured Data Transformation History (SDTH) bridges the gap 
between PROV and SDTL. SDTH extends the PROV data model to answer questions about data 
preparation and management operations not available in PROV. 
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Introduction 

Structured Data Transformation History (SDTH) offers a standard way to describe and 
query programs that modify data used for statistical analysis. As we move toward 
increased reuse and interoperability of data from different sources, greater transparency 
about how data were processed becomes essential for FAIR data (Wilkinson et al., 2016).  
However, programs that manage and modify data can be long and complex, making it very 
difficult to see how variables were created and modified. SDTH contributes to making data 
FAIR by providing a simple, searchable representation of data transformation programs. 
 

Our development of SDTH was motivated by the need to answer the following four 
guiding questions about dataframes (rectangular data structures) and variables (columns 
in dataframes)1: 

 
1. What dataframes/variables affected the values of variable X or dataframe Y? 

2. What dataframes/variables were affected by variable X or dataframe Y? 

3. What commands affected the values of variable X or dataframe Y? 

4. What commands were affected by variable X or dataframe Y? 

 
These are fundamental questions for anyone trying to understand or audit a program 

or command script. For example, data repositories must understand data management 
scripts to evaluate requests for release of outputs derived from confidential data. Much of 
the data used in biomedical and social science research is only available in “data enclaves,” 
such as the Federal Statistical Research Data Centers operated by the US Census Bureau. 
Researchers working in these facilities can analyse restricted-use data, but tables, graphs, 
and other files cannot be removed from the secure environment without approval.  Since 
some variables are more likely to disclose sensitive information than others, a query like 
“Which variables were affected by the variable ‘age’?” will be helpful in auditing code used 
to produce outputs requested for public release.   

SDTH bridges the gap between PROV (Groth & Moreau, 2013), the widely used World 
Wide Web Consortium provenance model, and languages that are used to manage and 
modify data, such as R (R Core Team, 2013), Python (Python Software Foundation, 2019), 
SPSS (IBM Corp, 2019), SAS (SAS Institute, 2015), and Stata (StataCorp, 2020). We refer to 
these languages as ‘procedural,’ because commands are processed in a pre-defined order.  
In contrast, PROV is expressed in Resource Description Framework (RDF) schema, which 
describes relationships among things without a predefined order. PROV also lacks 
elements for describing complex objects, like data files with internal structures and 
computer programs with multiple steps. We use Structured Data Transformation 
Language (SDTL) (Alter et al., 2020; Alter et al., 2021; DDI Alliance, 2025e), a software-
independent language for data transformations in statistical analysis software, as a stand-
in for all procedural languages. SDTL is designed to describe data transformation 
operations in enough detail to be executable and predictable.  

 
1 The rows in a dataframe describe individuals, which may be persons, places, years, or other ‘units 
of observation.’ Columns in a dataframe are attributes of these individuals, like name, age, the 
response to a question, population, Gross Domestic Product, etc.  We use ‘file’ to refer to data on 
persistent storage media, and ‘data set’ as a general term referring to any collection of data. 
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The difference between PROV and SDTL is not simply a question of detail. Each 
language uses fundamentally different concepts to describe data. Entities in PROV must 
have immutable attributes, while the dataframes and variables in procedural languages 
like SDTL are inherently changeable. An SDTL program can change the contents of a 
dataframe or variable but continue to use the same name to refer to the modified version.   

We argue that the PROV model does not capture dependence at the fine grain needed.  
SDTL, on the other hand, remains a procedural language, in which variable names may be 
reused for completely unrelated concepts. Thus, SDTL is incompatible with the declarative 
approach to provenance exemplified by PROV. We propose SDTH as a full-fledged 
declarative provenance model that captures dependence at multiple granularities. SDTH 
uses the concept of a data “instance” to mediate between the immutable entities described 
by PROV and the mutable artifacts in SDTL.  

PROV  

PROV is a tool for describing the history of an object. It is designed to identify things, 
attribute them to persons or other entities, and represent the steps involved in creating 
and processing them (Groth & Moreau, 2013; Moreau et al., 2015). PROV enables 
interoperability across provenance gathered by different systems in diverse domains.  
PROV is expressed in RDF, which can be queried with the SPARQL query language and 
combined with RDF from other specifications.   

PROV is based on three main concepts: Entity, Activity, and Agent. Entities are things, 
which includes physical, digital, and conceptual objects. Activities create entities and use 
entities to make new entities. An agent plays a role in an activity and has some 
responsibility for entities produced by the activity.  PROV recognizes that a new entity is 
“generated” by an activity, and that other entities may be “used” in the creation of the new 
entity.   

PROV defines an entity as “a physical, digital, conceptual, or other kind of thing with 
some fixed aspects; entities may be real or imaginary.” (Moreau & Missier, 2013, para. 
5.1.1). PROV developed from experience with the Open Provenance Model (Moreau et al., 
2008), in which artifacts were defined as immutable. This rule was relaxed in PROV, such 
that PROV entities may be mutable, as long as the attributes that matter are fixed (Moreau 
et al., 2015, pp. 243–244).    

PROV is inadequate for answering the four questions posed above. First, PROV has no 
way of describing how a program works on a data set. PROV describes a workflow as a 
network of processes (activities) that input existing entities and output new entities. Each 
entity is immutable, and each process is a black box without any information about its 
internal processes. Second, PROV does not describe data sets. Even simple data formats, 
like comma-separated values (CSV), have meaningful internal structures, like records, 
variables, and variable names.   

The ProvONE extension to PROV was intended to add more granularity for describing 
workflows (Cuevas-Vicenttín et al., 2016). ProvONE defines a Program as a subclass of the 
PROV Plan, which refers to a set of actions taken to achieve a goal. To make Programs 
more granular, ProvONE introduced the SubProgram, which is a component of a Program.  
ProvONE also models both retrospective and prospective provenance. Retrospective 
provenance is a history of a computation, including the tasks that were executed, objects 
used and created, and the environment in which the computation was executed.  
Prospective provenance is a recipe for performing a computation, including each of the 
steps to be performed. However, ProvONE inherits some of the limitations of PROV. For 
example, ProvONE does not have a way to describe structures within data sets like 
dataframes. 
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SDTL 

SDTL was created by the “Continuous Capture of Metadata” (C2Metadata) Project (Alter et 
al., 2020; Alter et al., 2021) with the goal of automating the revision of metadata in 
standard formats, like Data Documentation Initiative (DDI Alliance, 2025) (Vardigan et al., 
2008) and Ecological Metadata Language (EML) (Fegraus et al., 2005).  Even when the 
original data was fully described in standard metadata, revising that metadata to reflect 
the results of command scripts is a time-consuming manual task. The C2Metadata 
workflow automates the re-creation of metadata files by using the command scripts that 
modified the data to update the metadata. SDTL plays an important role in the C2Metadata 
workflow by providing a common representation of data transformation commands in five 
widely used statistical analysis languages: SPSS, SAS, Stata, R (tidyverse), and Python 
(pandas). Unlike other languages, SDTL is structured in formats, such as JSON and XML, 
that can be interpreted by a computer program without parsing or syntax rules. SDTL is 
also potentially useful for translating between languages (Song et al., 2021). 

Like the languages that it represents, SDTL is a procedural language. This means that 
SDTL commands are executed in a sequence of ordered steps, which we call a program or 
script. The outcome of an SDTL program depends on the order of the steps. The 
procedural approach is very different from PROV and ProvONE, which describe dataflows 
as networks.   

SDTL uses three concepts to describe data used in statistical analysis: dataframes, 
variables, and files. Dataframes are rectangular data matrices in which rows are 
observations on individuals, which could be persons, countries, years, or any other entity.  
Columns are variables (attributes) describing those individuals. The intersection of a row 
and column in a Dataframe identifies a single data value, which may be a number or text.  
We use Dataframe to refer to data in computer memory during the execution of a Program.  
When a Dataframe has been stored on a persistent medium, we call it a File.  Files must be 
loaded by a Program to create Dataframes, which are acted upon by the Program.   

SDTL includes all the information needed to answer our four guiding questions. The 
C2Metadata Project demonstrated that SDTL can be used to derive variable-level 
provenance. As described in Alter et al. (2021), C2Metadata tools create an interactive 
codebook, in which every variable in a data set is hyperlinked to all commands and 
variables that affect its values. 

Although SDTL includes all the information needed to answer our four guiding 
questions, querying SDTL is not easy. SDTL is verbose. SDTL elements may have multiple 
properties and may be nested several levels deep.  Our guiding questions only ask about 
program steps, files, dataframes, and variables, and they do not involve the specifics of 
data transformation found in SDTL. In addition, the procedural structure of SDTL requires 
retaining the order in which commands are executed, which adds to the complexity of 
SDTL RDF. SDTH was created to provide a way to write simple RDF queries about key 
aspects of a Program without all the details included in SDTL.   

Variables Versus Entities 

The first step in transporting SDTL to a PROV-inspired schema is recognizing that 
Dataframes and Variables in procedural languages do not qualify as PROV Entities. As we 
noted above, PROV Entities are stable and immutable objects. In contrast, Dataframes and 
Variables change during the execution of a Program. We think of the cells in a Dataframe 
as containers. The contents may change, but the container is the same. A Program may use 
the same name to refer to a Dataframe or Variable, even though the values in that data 
structure have changed many times.  



 Alter et al.   |   5 

 

IJDC  |  Research Paper 

To describe Dataframes and Variables in a way consistent with PROV, we introduce 
the concept of the state or “instance” of a Dataframe or Variable. A DataframeInstance or 
VariableInstance is a specific set of values associated with the name of a Dataframe or 
Variable. Only one instance may be associated with this name at any given time, but any 
number of instances may share a name during the execution of a Program. Identifying 
instances of data structures also allows us to unambiguously link them to program steps 
and to each other via the prov:wasDerivedFrom relationship. 

The definition of a VariableInstance in SDTH is equivalent to an “Instance Variable” 
defined in the Generic Statistical Information Model (GSIM) (United Nations Economic 
Commission for Europe (UNECE), 2024).  It is also closely related to an “Instance Variable” 
in the DDI Cross-Domain Integration (DDI-CDI) standard recently released by the DDI 
Alliance (2025a).   

SDTH assigns IDs to instances of Variables, Dataframes, and Files: sdth:VariableInstance, 
sdth:DataframeInstance, sdth:FileInstance. Each instance is a PROV entity, because any 
change in the values of its data results in a new instance. 

SDTH Schema 

The elements of SDTH are shown in Tables 1 and 2.  SDTH has only five entities: Program, 
ProgramStep, FileInstance, DataframeInstance, and VariableInstance. These entities 
appear as subjects or objects of the SDTH predicates shown in Table 3. (See DI Alliance 
(2025b) for SDTH documentation.) 

Table 1. SDTH Entities 

sdth:Program A program that modifies data, which consists of one or more 

ProgramSteps. 

sdth:ProgramStep A step in a Program. A ProgramStep may consist of several 

ProgramSteps. 

sdth:FileInstance A data file on a storage device.  A FileInstance identifies a 

data file in a specific state. 

sdth:DataframeInstance A dataframe is a rectangular data array of rows (observations) 

and columns (variables). A DataframeInstance identifies a 

dataframe in a specific state. 

sdth:VariableInstance A variable is a vector of values in the column of a dataframe.  

A VariableInstance identifies a variable in a specific state. 

Table 2. SDTH Predicates 

Allowable Subjects Predicate Allowable Objects 

sdth:Program 

sdth:ProgramStep 

sdth:hasProgramStep sdth:ProgramStep 

sdth:ProgramStep sdth:hasSourceCode text 

sdth:ProgramStep sdth:hasSDTL text 
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sdth:ProgramStep sdth:loadsFile sdth:FileInstance 

sdth:ProgramStep sdth:savesFile sdth:FileInstance 

sdth:ProgramStep sdth:consumesDataframe sdth:DataframeInstance 

sdth:ProgramStep sdth:producesDataframe sdth:DataframeInstance 

sdth:ProgramStep sdth:usesVariable sdth:VariableInstance 

sdth:ProgramStep sdth:assignsVariable sdth:VariableInstance 

sdth:FileInstance 

sdth:DataframeInstance 

sdth:hasVarInstance sdth:VariableInstance 

sdth:FileInstance 

sdth:DataframeInstance 

sdth:VariableInstance 

sdth:wasDerivedFrom sdth:FileInstance 

sdth:DataframeInstance 

sdth:VariableInstance 

sdth:FileInstance 

sdth:DataframeInstance 

sdth:VariableInstance 

sdth:elaborationOf sdth:FileInstance 

sdth:DataframeInstance 

sdth:VariableInstance 

sdth:FileInstance 

sdth:DataframeInstance 

sdth:VariableInstance 

sdth:hasName text 

 
ProgramSteps are PROV Activities that act upon FileInstances, DataframeInstances, 

and VariableInstances. Every ProgramStep is associated with both an input data entity 
(loadsFile, consumesDataframe, usesVariable) and an output data entity (savesFile, 
producesDataframe, assignsVariable) activity.  ProgramSteps are linked to the original 
data transformation script through hasSourceCode and hasSDTL, which provide the 
original code and its SDTL equivalent respectively. 

FileInstances and DataframeInstances are collections of VariableInstances, which are 
linked by hasVarInstance. A VariableInstance may exist in more than one FileInstance and 
DataframeInstance.  

We use wasDerivedFrom and elaborationOf to describe two ways that a new data 
instance (i.e., a VariableInstance, a DataframeInstance, or aFileInstance) may be related to 
a previous data instance. When a ProgramStep changes the values in a data instance, we 
use wasDerivedFrom to link the new data instance to all previous data instances that 
affected it. Changing the order of rows in a Dataframe also results in a new 
DataframeInstance, because data transformation commands often use data from more 
than one row. For example, most statistical analysis software includes a “lag()” function 
that accesses the value of a Variable on the previous row. 

The elaborationOf predicate is used when a new data instance has the same data 
values as its predecessor, but metadata have changed. Metadata includes labels, 
descriptions, and other explanatory information.  For example, adding labels to the values 
of a categorical (factor) variable results in a new VariableInstance linked to the previous 
instance with elaborationOf.  

The hasName predicate plays a simple but essential function by linking instances of 
Files, Dataframes, and Variables in SDTH to their mutable counterparts in SDTL and the 
source code. 
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An Example Program in SDTH 

We discuss here an example program written in Python. Due to space limitations, the 
example program and related files are available at DDI Alliance (2025c). This program 
loads two CSV files derived from a study of political opinions into dataframes. One 
dataframe describes the subjects’ personal characteristics, and the other holds their 
responses to questions. The program creates two new variables from a measure of 
household size: 'HHsize' and 'HHcateg'. 'HHcateg' is transformed from its original values 
into a set of six categories. The revised personal data set is merged with the political data, 
and then it is saved to a file. 

The most complicated command in the program is: 
PersonalData['HHcateg'] = pd.cut(PersonalData['HHsize'], [1, 2, 3, 5, 7, 10, 999], 
include_lowest=True, right=False, labels=['1', '2', '3-4', '5-6', '7-9', '10+'] )  

This command performs several actions, which are shown in Figure 1. First, the values of 
HHsize are assigned to a new categorical variable (HHcateg) using a set of cut points 
(#ProgStep0005a).  Second, the data type of the new variable HHcateg is set to the Python 
data type “Factor” (#ProgStep0005b).  Third, the command assigns labels to the values of 
HHcateg (#ProgStep0005c).  Although this is one command in Python, we also show SDTL, 
which translates it into three simpler SDTL commands: Compute, SetDataType, and 
SetValueLabels. (SDTL commands are abridged to simplify the graph.) This decomposition 
helps SDTL to cover a variety of languages, each of which combines actions into 
commands in different ways.    
 

 
Figure 1.  Graphical representation of line 5 in the Python script. 
 
Figure 1 shows the SDTH for the command in line 5 as a graph. In SDTH, we can 

represent the relationship between the original Python command ((#ProgramStep005) 
and the more granular SDTL equivalent (#ProgramStep005a, #ProgramStep005b, 
#ProgramStep005c), because an SDTH ProgramStep can be composed of other 
ProgramSteps. Each of these ProgramSteps creates a new VariableInstance (#VarIns014a, 
#VarIns014b, #VarIns014c). However, all three of these VariableInstances are associated 
with the same variable name in Python, “HHcateg”.   
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Figure 1 also shows the difference between SDTH predicates “derivedFrom” and 
“elaborationOf”. The first command in this sequence (#ProgramStep005a: “Compute”) 
changes values in the data, and its output VariableInstance (#VarIns014a) is linked to its 
input VariableInstance (#VarIns013) by sdth:derivedFrom. In contrast, the next two 
ProgramSteps only affect metadata. The SDTL “SetDataType” command 
(#ProgramStep005b) changes the data type of variable “HHcateg” to a Python “Factor”, 
and the SDTL “SetValueLabels” command (#ProgramStep005c) adds value labels. We use 
sdth:elaborationOf to describe the relationships between the output and input 
VariableInstances of these ProgramSteps, because values in the variable do not change.  
We describe these metadata attributes with elements from the DDI-Lifecycle (DDI 
Alliance, 2025b) standard, ddi-l: NumericDomain and ddi-l: CodeList, to describe 
attributes of VariableInstances. The example in Figure 1 uses XML for these attributes, but 
the DDI-Lifecycle standard also allows artifacts like CodeLists to be identified by URIs.   

Querying SDTH 

We give an example here of a SPARQL query answering one of the questions posed above.  
(See DDI Alliance (2025c) for other SPARQL queries.)  Specifically, we tailor the third 
question to the SDTH example program as: “What commands affected the values of 
variable HHcateg?”  The SPARQL for this query traces the origins of HHcateg to earlier 
VariableInstances using the wasDerivedFrom predicate, and then it outputs the command 
that produced each VariableInstance by selecting program steps through the 
assignsVariable predicate: 

 
Example SPARQL query 
    PREFIX sdth: <http://DDI/SDTH/> 
    PREFIX sdtest: <http://test/#>  
    SELECT ?sname ?oname  ?pscode 
    WHERE { 
        ?s  sdth:wasDerivedFrom+ ?o . 
        ?s  sdth:hasName ?sname . 
        ?o  sdth:hasName ?oname . 
        ?pstep sdth:assignsVariable ?o. 
        ?pstep sdth:hasSourceCode ?pscode. 
    FILTER (?sname = "HHcateg")       } 

 
Output from this query is shown in Table 4. 

Table 4. SPARQL Output 

Derived 

variable 

name 

(?sname) 

Command 

(?pscode) 

Source 

variable 

name 

(?oname) 

HHcateg PersonalData = pd.read_csv("SmallTestPersonal.csv") PPHHSIZE  

HHcateg MergedData = PersonalData.merge(PoliticalData, on="ID", 

how="inner") 

PPHHSIZE  

HHcateg PersonalData  = HHsize  
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PersonalData.assign(HHsize=PersonalData['PPHHSIZE'] ) 

HHcateg MergedData = PersonalData.merge(PoliticalData, on="ID", 

how="inner") 

HHsize  

Metadata 

FileInstances and VariableInstances in SDTH provide a bridge between the PROV world 
and metadata standards, like DDI (Vardigan et al., 2008), EML (Jones et al., 2019), Dublin 
Core (DCMI Usage Board, 2010), Data Catalog Vocabulary (DCAT) (Albertoni et al., 2024), 
and schema.org (W3C Schema.org Community Group, 2024). A data set may be 
accompanied by many types of descriptive information in the form of metadata. Variables 
are characterized by labels, data types, display formats, value labels, and other attributes.  
Files may have authors, titles, version dates, etc. Rather than duplicating metadata 
properties that can be found in other standards, SDTH RDF can be used with types found 
in other standards. For example, an SDTH FileInstance corresponds to a dcat:Dataset, 
which can be described by properties dcat:creator, dcat:title, and dcat:description.   

Related Work 

Both noWorkflow (Murta et al., 2015; Pimentel et al., 2017) and the End-to-End 
Provenance Project (Lerner & Boose, 2015) provide query capabilities similar to those in 
SDTH. These tools collect fine-grained provenance during the execution of scripts in 
Python (noWorkflow) and R (End-to-End Provenance). To reduce the burden on 
researchers, they automate the collection of provenance by installing functions that 
operate in the background as a script is executed. After each program step, data objects 
(files, dataframes, variables, etc.) used, created or modified are recorded in a provenance 
information system and saved for examination.  Since the provenance system registers 
every data transformation as a new object, they correspond to the data instances 
described in SDTH.   

Although provenance maps in noWorkflow and the End-to-End suite identify the same 
nodes as SDTH, they differ in how nodes are linked by edges. The Data Derivation Graph 
(DDG) in the End-to-End suite creates links between program steps (procedure nodes) 
using the PROV “wasInformedBy” predicate. This creates an ordered sequence of program 
nodes to which data nodes are linked by “used” and “wasGeneratedBy” predicates. In 
contrast, SDTH creates ordered links between data nodes using the “wasDerivedFrom” 
predicate, and program steps are linked indirectly through their connections with data 
nodes. In other words, DDG focuses on program steps, and SDTH focuses on data.  This is a 
minor difference, because the order of nodes can be inferred from the links between 
program steps and data nodes (SDTH:assignsVariable/DDG:wasGeneratedBy versus 
SDTH:usesVariable/DDG:used) without directly linking nodes of the same kind. 

In general, the differences between the noWorkflow and the End-to-End Provenance 
projects and the C2Metadata Project, which developed SDTL and SDTH, are due to 
differences in the use cases that they were designed to serve. Both noWorkflow and the 
End-to-End suite were created to improve data analysis by making scripts more 
transparent and reproducible. Collecting provenance information during the execution of 
a program, allows them to collect both prospective and retrospective provenance and 
other information about the execution environment. In contrast, the C2Metadata Project 
(Alter et al., 2021) grew out of the need for variable-level provenance information 
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compatible with metadata standards like DDI and EML, which are widely used in the social 
and ecological sciences. Since SDTL was intended to describe data after transformations 
were performed, the tools developed by the C2Metadata Project create SDTL from scripts 
not during program execution. In most cases, SDTH can be derived from scripts rather 
than during program execution. 

SDTH, Linked Data, and FAIR 

SDTH addresses the R (Reusability) in the FAIR principles (Wilkinson et al., 2016). Data 
cannot be reused without an accurate description of its provenance, and SDTH shows how 
data was produced and transformed. SDTH can also be combined with other provenance 
information available in PROV and its extensions.   

By applying persistent identifiers to describe data objects like files and variables, 
SDTH is compatible with FAIR and other applications of Linked Data. A typical data 
transformation program loads files from and saves files to storage devices.  These data 
files can be described by persistent identifiers, such as the DOIs issued by DataCite used in 
many data repositories.   
Data repositories could also provide persistent identifiers for variables, which would 
enable FAIR searching and data merging across repositories. Metadata formats, like the 
DDI standards, already accommodate URIs, and the infrastructure for variable-level 
persistent identifiers is being built. A growing number of data producers use the Colectica 
(2022) suite of tools, which are built around a DDI-compatible database of variables. The 
Statistical Data Exchange (SDMX) (2021) standard used by the official statistics 
community is developing standards for assigning URIs to variables, code schemas, and 
other data objects. Registries, like BioPortal, the National Library of Medicine Common 
Data Element Registry, and the European Language Social Science Thesaurus (ELSST) can 
use ontologies like OWL and SKOS to describe relationships between variables and 
concepts (National Center for Biomedical Ontology, 2005; National Institutes of Health, 
2015; CESSDA, 2022; Horridge & Patel-Schneider, 2012; Miles & Pérez-Agüera, 2007).   

Conclusion 

Our development of SDTH began with four questions that are relevant to any program or 
command script modifying data for statistical analysis. The example presented above 
shows that all four questions can be answered by applying basic RDF tools, like SPARQL, to 
an SDTH graph, like Figure 1. All the queries in our example report the names of variables, 
dataframes, and files as they appear in the original source code. Program steps can be 
described by retrieving the text of the source code or its SDTL equivalent. Thus, these 
queries provide answers in terms of a procedural language, even though SDTH is a process 
language compatible with PROV. 

The central insight in SDTH is that the data objects referenced in a procedural 
language are incompatible with the immutable entities described in PROV.  In procedural 
languages, data objects (variables, dataframes, or files) change as the program is executed.  
We can only know the state of an object at a specific point in the program by working 
through all the steps that preceded it. Thus, the sequence of commands is essential to 
understanding the outcomes of the program in Python or SDTL. In SDTH, ProgramSteps 
are not explicitly sequenced, and data objects are immutable entities.  Since an entity 
cannot change, a new entity is created every time any aspect of a variable, dataframe, or 
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file changes. We describe these states as unique instances of the data object, even though a 
program may use the same name to refer to multiple instances of a data object.   

SDTH does not depend on SDTL, but there are advantages of creating SDTH from SDTL.  
Commands in SDTL tend to be simpler and more granular than in other languages, as we 
showed in the example above.  Since code for prototype tools that convert other languages 
to SDTL already exists, a tool for converting SDTL into SDTH can serve multiple other 
languages. An SDTL-to-SDTH tool is under development at this time, which will be based 
on code used to create an interactive codebook from SDTL (Alter et al., 2021). 

We are currently preparing documentation formally describing SDTH with the goal of 
proposing its addition to the suite of standards maintained by the DDI Alliance.   
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